ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 20 МАТЕМАТИКИ Выпуск 3

2013

А. Н. З у б к о в (Таганрог, филиал ДГТУ). Деформации n-мерных комплексных многообразий \mathcal{F}^n в E^{2n+2} , $n\geqslant 1$, с краем $\delta\mathcal{F}^n$ и с нулевым G-кручением при условии защемления их вдоль края.

Пусть в евклидовом пространстве $E^{2n+2}, n \geqslant 1$, задано n-мерное комплексное многообразие $\mathcal{F}^n = (F^{2n}, \Sigma)$, где F^{2n} есть 2n-мерная поверхность класса регулярности C^3 в E^{2n+2} (см. [1]), а Σ — комплексная структура, введенная на \hat{F}^{2n} (см. [2]). Присоединим к F^{2n} подвижный репер $\{\overline{x},\overline{e}_1,\overline{e}_2,\ldots,\overline{e}_n,\$ где \overline{x} — радиус-вектор точки $x \in F^{2n}$, \overline{e}_i $(i=1,\ldots,2n)$ — единичные базисные векторы в касательном векторном пространстве T_xF^{2n} к F^{2n} в точке $x \in F^{2n}$, а $\overline{e}_{\sigma}(\sigma=2n+1,2n+2)$ векторы ортонормированного базиса в нормальном векторном пространстве $N_x F^{2n}$. Введем на поверхности F^{2n} поле смещений $\overline{u}(x)=a^i\overline{e}_i+c^\sigma\overline{e}_\sigma,\ x\in 2^{2n},$ при ее деформации в E^{2n+2} и возьмем на F^{2n} поверхностную полосу $\{L, N_{x(s)}F^{2n}\}$ (см. [1]), $x(s)\in L$, вдоль гладкой кривой $L\subset F^{2n}$, где s — натуральный параметр вдоль $L,\ 0\leqslant s\leqslant S,\$ и L проходит через точку $x=(u^1(0),u^2(0),\dots,u^{2n})$ в направлении единичного вектора $\bar t\in T_xF^{2n}.$ Используя деривационные уравнения для F^{2n} вдоль ее полосы, найдем абсолютную производную в связности $(\nabla \oplus \nabla^{\perp})$ Ван дер Вардена—Бортолотти от векторного поля $\overline{u}(s)=u(x(s))$ вдоль кривой $L\subset F^{2n}$, где ∇ — связность Леви–Чивиты на F^{2n} , а ∇^{\perp} — нормальная связность, и возьмем проекцию этой производной на N_xF^{2n} в точке $x\in L\subset F^{2n}$. В результате получим вектор $\overline{g}(x,\overline{t})=\varphi_0^{-1/2}\sum_{\sigma=n+1}^{n+2}(a^i\omega_i^\sigma+dc^\sigma+c^\beta\omega_\beta^\sigma)\overline{e}_\sigma$, где $\varphi_0=g_{ij}\omega^i\omega^j=ds^2$. Возьмем затем произвольный нормальный вектор $\overline{n}(x) = n^{\alpha}(x)\overline{e}_{\alpha}$ к F^m в точке $n \in F^n$ и умножим его скалярно на вектор $\overline{g}(x,\overline{t})$. В результате, получим скалярную величину $G(x,\bar{t})=\varphi_0^{-1/2}\sum_{\alpha=m+1}^n n^{\alpha}(b^j\omega_j^{\alpha}+dc^{\alpha}+c^{\beta}\omega_{\beta}^{\alpha})$. Следуя [1], эту величину $G(x,\bar{t})$ назовем G-кручением комплексного многообразия \mathcal{F}^n в точке $x\in F^{2n}$ в направлении $\overline{t}\in T_xF^{2n}$, а деформации F^{2n} в E^{2n+2} , для которых G=0 при любых $x \in F^{2n}$ и любом $ar{t} \in T_x F^{2n}$, будем называть деформациями с нулевым G-кручением комплексного многообразия \mathcal{F}^n . По построению величина G является инвариантом нормального оснащения NF^{2n} на F^{2n} . При G=0 на F^{2n} получается система дифференциальных уравнений относительно неизвестных функций a^{i} $(i=1,2,\ldots,2n),$ c^{σ} ($\sigma = 2n+1, 2n+2$), тип которой определяется не только метрическими, но и внешне геометрическими свойствами самой поверхности $\,F^{2n}.\,$ Имеет место

Теорема. Если $\mathcal{F}^n = (F^{2n}, \Sigma)$ — компактное комплексное многообразие, $n \geqslant 1$, защемлено вдоль края $\delta \mathcal{F}^n$, то оно не допускает деформаций с нулевым G-кручением отличных от тождественного.

[©] Редакция журнала «ОПиПМ», 2013 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. $3yбков\ A.\ H.\$ Теория инвариантов нормального оснащения m-мерных полос на подмногообразиях F^m евклидова пространства $E^n,\ n>m,\$ и ее системное применение в теории многомерных поверхностей. Ростов-на-Дону: Издательский центр ДГТУ, 2009, 311 с.
- 2. *Шабат Б. В.* Введение в комплексный анализ. Ч. ІІ. М.: Наука, 1976, 400 с.