ОРОЗЬЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 20 МАТЕМАТИКИ Выпуск 3

2013

И. В. М и с ю р а $\ \ ({\rm Pостов\text{-}на\text{-}Донy},\ {\rm HO\Phi Y})$. Фильтрация в моделях со скачками. Метод Монте-Карло.

Значительный интерес к сигналам со скачками обусловлен многочисленными приложениями. Адекватной моделью для процессов со скачками являются процессы Леви [1] с негауссовскими законами распределений. Дискретные аналоги процессов Леви также рассматриваются во многих работах в связи с разнообразными приложениями, например, в работе [2]. В докладе используется иная, чем в [2], модель процесса со скачками.

Задача оценки процесса ${\bf X}$ по наблюдаемому процессу ${\bf Y}$ решается в дискретной и конечной постановке, при которой процессы представляются случайными векторами. Под оптимальной оценкой понимается условное математическое ожидание ${\bf E}({\bf X}\,|\,{\bf Y})$. Предполагается существование структурного вектора δ , определяющего местоположение и характер скачков процесса ${\bf X}$. Условный закон распределения $Law({\bf Y}\,|\,{\bf X})$ является многомерным нормальным законом распределения с ковариационной матрицей $C_{\bf Y}$ и математическим ожиданием ${\bf X}$, условный закон распределения $Law({\bf X}\,|\,\delta)$ — многомерный нормальный закон с ковариационной матрицей $C_{\bf X}(\delta)$ и нулевым математическим ожиданием. Таким образом, условный закон распределения $Law({\bf X}\,|\,{\bf Y},\delta)$ является нормальным законом распределения с ковариационной матрицей $(C_{\bf Y}^{-1}+C_{\bf X}^{-1}(\delta))^{-1}$ и математическим ожиданием $M({\bf Y},\delta)=(C_{\bf Y}^{-1}+C_{\bf X}^{-1}(\delta))^{-1}C^{-1}{\bf Y}$, т.е. сигнал описывается параметризованным семейством нормальных законов. Оптимальная оценка вычисляется как повторное математическое ожилание:

$$\widehat{\mathbf{X}} = \mathbf{E}\mathbf{E}(\mathbf{X} \mid \mathbf{Y}, \delta). \tag{1}$$

Внутреннее математическое ожидание $\mathbf{E}(\mathbf{X} | \mathbf{Y}, \delta) = M(\mathbf{Y}, \delta)$. Внешнее математическое ожидание вычисляется методом Монте-Карло

$$\mathbf{E}M(\mathbf{Y}, \delta) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbf{E}M(\mathbf{Y}, \delta^{(i)}), \tag{2}$$

где $\delta^{(i)}$ — сгенерированные траектории процесса δ .

В связи с предлагаемым методом оценки рассмотрим следующую модель: $C_{\mathbf{Y}}^{-1}=\alpha E$, компоненты вектора \mathbf{X} подчиняются уравнениям: $x(0)=0,\ x(i)-x(i-1)=\delta(i)r(i)$. Вектор \mathbf{R} распределен по нормальному закону с нулевым математическим ожиданием и обратной ковариационной матрицей $C_{\mathbf{R}}^{-1}=\beta E$. Отсюда $C_{\mathbf{X}}^{-1}=\beta A^TD(\delta)A$. Следовательно, матрица $C_{\mathbf{Y}}^{-1}+C_{\mathbf{X}}^{-1}(\delta)$ является трехдиагональной и число операций при вычислении $M(\mathbf{Y},\delta)$ пропорционально размерности вектора \mathbf{Y} . Процесс δ , отвечающий за скачки, является марковской цепью с пространством состояний $H=\{1,\gamma\}$, причем $\gamma>1$, и матрицей переходных вероятностей $\prod=\binom{a-1-a}{1-b}$, причем a близко к единице и b близко к нулю. Генерация траекторий $\delta^{(i)}$ также не

[©] Редакция журнала «ОПиПМ», 2013 г.

требует больших вычислительных затрат. Таким образом, предлагаемый нелинейный метод фильтрации сигналов является вычислительно эффективным.

СПИСОК ЛИТЕРАТУРЫ

- 1. Appelbaum D. Levy Processes and Stochastic Calculus. Cambridge: Cambridge Univ. Press, 2009, p. 460.
- 2. Белявский Г. И., Никоненко Н. Д. Алгоритм расчета безарбитражной цены финансового обязательства на основе дискретизации процессов Леви. — Научнотехнические ведомости СПбГПУ, 2012, т. 3, в. 150, с. 56–59.