ОБОЗРЕНИЕ ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Том 21 МАТЕМАТИКИ Выпуск 5 2014

Ю.В.Заика, Е.К.Костикова (Петрозаводск, ИПМИ КарНЦ РАН). Оценка коэффициента рекомбинации в модели термодесорбции водорода.

Интерес к взаимодействию изотопов водорода с конструкционными материалами носит многоплановый характер: энергетика, защита металлов от водородной коррозии, проектирование химических реакторов, ракетостроение. В частности, поскольку в термоядерных реакторах (пока в отдаленной перспективе) предполагается использование трития, возникает проблема возможных его диффузионных утечек и накопления в конструкционных материалах. Энтузиасты говорят не только о водородной энергетике, но и о водородной экономике. Остановимся на экспериментальном методе термодесорбции (ТДС), учитывая лишь лимитирующие факторы.

К р а е в а я з а д а ч а. Рассмотрим перенос водорода в образце тестируемого металла или сплава (пластине толщины ℓ). Считаем, что нагрев медленный, практически равномерный, так что диффузионный поток можно считать пропорциональным градиенту концентрации. Примем стандартную модель диффузии:

$$\partial_t c(t,x) = D(T)\partial_x^2 c(t,x), \qquad (t,x) \in Q_{t_*},$$

где t — время, $Q_{t_*} = (0, t_*) \times (0, \ell)$; c(t, x) — концентрация диффундирующего водорода (атомарного); D — коэффициент диффузии. Для определенности полагаем, что D зависит от температуры T(t) по закону Аррениуса с предэкспоненциальным множителем D_0 и энергией активации E_D (R — универсальная газовая постоянная): $D = D_0 \exp \{-E_D/[RT(t)]\}$. Начальные данные $c(0, x) = \varphi(x), x \in [0, \ell]$, уточним позже. В качестве граничных условий примем уравнения

$$\mu s(T) p_{0,\ell}(t) - b(T) c_{0,\ell}^2(t) = \mp D(T) \partial_x c|_{0,\ell} \,,$$

 $c_{0,\ell} \equiv c(t,x)|_{x=0,\ell}$. Здесь μ — кинетический коэффициент; s(T) — коэффициент, отражающий тот факт, что только малая часть «налетающего» молекулярного водорода окажется в форме атомов на поверхности (будем называть *s* коэффициентом прилипания, имея однако в виду, что он характеризует итог общего процесса физадсорбции-диссоциации-хемосорбции молекулярного газа в атомы на поверхности); $p_0(t)$, $p_\ell(t)$ — давления газа (H₂) с соответствующих сторон мембраны. С учетом «усреднения» многостадийного процесса коэффициент *объемной десорбции b* является эффективным коэффициентом рекомбинации. В равновесии (все производные равны нулю) получаем $\overline{c} \propto \sqrt{\overline{p}}$, что соответствует диапазону адекватности закона Сивертса.

Остановимся подробнее на ТДС-эксперименте. В камеру с тонкой пластиной из исследуемого металла или сплава подается водород в газовой фазе при сравнительно большом постоянном давлении \bar{p} . Пластина нагрета электрическим током до температуры $\bar{T} = \text{const}$ с целью увеличения скорости сорбции. После того как образец поглотит достаточное количество водорода (до состояния равновесного насыщения), он быстро охлаждается (отключается ток нагрева). При этом резко падают скорости физико-химических процессов и значительное количество водорода остается в

[©] Редакция журнала «ОПиПМ», 2014 г.

образце. В режиме последующего вакуумирования камеры лента снова нагревается $(t_0 = 0, t \ge 0)$. Ограничиваемся такими скоростями нагрева, чтобы практически T(t,x) = T(t), D = D(T). С помощью масс-спектрометра измеряется давление молекулярного водорода в вакуумной камере, обусловленное десорбцией с поверхности (плотность потока десорбции $J(t) \equiv b(t)c_{0,\ell}^2(t)$):

$$p(t) = \theta_1 \int_0^t J(\tau) \exp\left\{(\tau - t)\theta_0^{-1}\right\} d\tau$$

Для упрощения обозначений примем $b(t) \equiv b(T(t)), \quad D(t) \equiv D(T(t)), \quad s(t) \equiv s(T(t)).$ Имеет место симметрия: $p(t) = p_0(t) = p_\ell(t), \quad c_0(t) = c_\ell(t), \quad D(t)\partial_x c|_0 = -D(t)\partial_x c|_\ell,$ $\varphi(x) = \varphi(\ell - x).$ Константы θ_i определяются характеристиками экспериментальной установки. В дифференциальной форме $J(t) = (p(t)/\theta_0 + \dot{p}(t))/\theta_1$. При медленном нагреве обычно пренебрегают производной давления $\dot{p}(t): J(t) = \eta p(t), \quad \eta \equiv 1/(\theta_0 \theta_1).$

Если дождаться равновесного насыщения водородом, то в начальный момент времени (t = 0, начало нагрева в вакууме) имеем $c(0, x) = \overline{c} = \text{const}$, $x \in [0, \ell]$. Время t_* окончания эксперимента определим условием p(t) = 0, $t \ge t_*$, $c(t_*, x) = 0$ (нули в относительном масштабе). Далее считаем вакуумную систему достаточно мощной, чтобы пренебречь ресорбцией при дегазации ($t \ge 0 \Rightarrow \mu sp = 0$).

Граничное условие $Dc_x(t,0) = bc_0^2(t)$ в пределе $(t \to +0)$ формально противоречит равномерному начальному распределению $c(0,x) = \varphi(x) = \overline{c}$. В алгоритме идентификации $\varphi(x)$ будет использоваться интегрально, так что искажением можно пренебречь. К тому же нас интересует отрезок времени $[t_1, t_2] \subset (0, t_*)$ в окрестности пика десорбции, когда «соизмеримы» объемные и поверхностные процессы.

П о с т а н о в к а з а д а ч и. Техника определения равновесных концентраций в диапазоне $\overline{c} = \overline{c}(\overline{p}, \overline{T}) \propto \sqrt{\overline{p}}$ (закон Сивертса) отработана. Коэффициент диффузии при фиксированной температуре достаточно надежно определяется методом проницаемости, когда за счет большого перепада давлений на входной и выходной сторонах мембраны при относительно высоких температурах и не слишком малых ℓ достигается диффузионный режим проницаемости. По времени запаздывания t_0 (точка пересечения с осью t асимптоты графика количества H, проникшего сквозь мембрану) находят $D = \ell^2/(6t_0)$ (Daines–Berrer method). При этом не обязательно достижение входной концентрацией уровня $c_0 \approx \overline{c}$ — главное, чтобы переходные процессы на входе относительно быстро приводили к установлению $c_0(t) \approx c_0 = \text{const}, t > \varepsilon (\varepsilon \ll t_*)$.

Гораздо сложнее определять параметры поверхностных процессов, поскольку SLR (surface limited regime) характерен для относительно невысоких температур и давлений. При этом градиент концентрации мал, модель упрощается (в классе обыкновенных дифференциальных уравнений), но резко падает точность измерений. В ТДС-эксперименте (обычно $T_0 = T(0)$ — комнатная температура) по мере нагрева SLR плавно переходит в DLR. Самое интересное (окрестность пика потока) происходит на этапе активного «соизмеримого» взаимодействия диффузии и десорбции. По этим причинам рассматриваем распределенную модель.

Считаем, что помимо ТДС-кривой J(t) (ТДС-спектра J(T)) известна равновесная концентрация \overline{c} при заданных условиях насыщения \overline{p} , \overline{T} . Значение \overline{c} можно определить по итогам дегазации и объему образца. Параметры поверхностных процессов существенно зависят от трудноконтролируемых внешних условий: окислы, примеси, шероховатость ... В этом одна из причин разброса оценок. Изменение свойств поверхности может быть и целенаправленным: например, напыление защитного (микро)нанослоя. Объемные же параметры \overline{c} , D «старого» конструкционного материала могут быть известными из справочной литературы. Следует только иметь в виду, что обычно значение коэффициента D вычислялось по модели, когда концентрация на границе с вакуумом считалась нулевой. В принятой модели диффузия и десорбция совместно «решают», какой будет текущая концентрация на границе. О ценка коэф фициент а десорбции. Пусть коэффициент диффузии D(T) известен. Оценке подлежит «трудноконтролируемый» параметр поверхностных процессов b(T). Граничные условия $D\partial_x c|_{0,\ell} = \pm bc_{0,\ell}^2$ нелинейны. Но по постановке обратной задачи функция $J(t) = bc_{0,\ell}^2$ известна. Поэтому формально (без учета погрешностей эксперимента и обработки измерений) можем рассмотреть линейную краевую задачу, заменив $bc_{0,\ell}^2$ на плотность десорбции J(t). Сделаем замену $t' = \int_0^t D(s) \, ds$ и после преобразований оставим прежнее обозначение t:

$$\partial_t c = \partial_x^2 c, \quad \partial_x c|_{x=0} = \widetilde{J}(t), \quad \partial_x c|_{x=\ell} = -\widetilde{J}(t),$$
$$\widetilde{J}(t) = D^{-1}(t)J(t), \quad J(t) = b(t)c_0^2(t) = b(t)c_\ell^2(t).$$

По постановке ТДС-эксперимента в режиме «быстрое охлаждение — медленный нагрев» имеем $J(0)\approx 0$ ($J(0)\ll J_{\max}$). Решение c=c(t,x) краевой задачи (обобщенное, с начальным условием $\varphi=\bar{c}$) имеет вид

$$c = \overline{c} - \int_0^t \widetilde{J}(\tau) \left\{ G(x,t;0,\tau) + G(x,t;\ell,\tau) \right\} d\tau,$$
$$G(x,t;y,\tau) = \frac{1}{\ell} + \frac{2}{\ell} \sum_{n=1}^\infty \exp\left\{ \frac{n^2 \pi^2}{\ell^2} (\tau-t) \right\} \cos\frac{n\pi x}{\ell} \cos\frac{n\pi y}{\ell}$$

где G — функция Грина (функция источника). Явное представление $c_0 = c_0(t)$:

$$c_0(t) = \bar{c} - \int_0^t \tilde{J}(\tau) K(t-\tau) \, d\tau, \quad K(s) \equiv \frac{2}{\ell} \left[1 + 2\sum_{n=2m}^\infty \exp\left\{ -\frac{n^2 \pi^2}{\ell^2} s \right\} \right].$$

В исходном времени $t-\tau$ заменится интегралом $\int_{\tau}^{t} D(s) ds$, а вместо $\tilde{J}(\tau)$ будет $J(\tau)$. Выражение $c_0(t)$ следует подставить в равенство $J(t) = b(t)c_0^2(t)$ (в $\sqrt{J} = c_0\sqrt{b}$). Функция J(t) известна, поэтому получаем семейство уравнений

$$\Phi(t; D_0, E_D, b_0, E_b) = 0, \quad t \in [t_1, t_2] \subset (0, t_*).$$

Формально можно считать, что обратная задача параметрической идентификации существенно упрощена: осталось подобрать константы в явной формуле. Но коэффициент диффузии D входит в выражение под символами интеграла и ряда. Ограничиваясь частичной суммой ряда, можно вычислять интегралы типа свертки

$$J_n(t) = \int_0^t J(\tau) \exp\left\{-\frac{n^2 \pi^2}{\ell^2} \int_{\tau}^t D \, ds\right\} d\tau = O(n^{-2})$$

 $(n = 2m, m \in \mathbf{N})$ как решения линейных начальных задач

$$\frac{d}{dt}J_n(t) = -\frac{n^2\pi^2}{\ell^2}D(t)J_n(t) + J(t), \qquad J_n(0) = 0.$$

Перейдем к формулировке вычислительного алгоритма.

1°. Фиксируем отрезок времени $[t_1, t_2] \subset (0, t_*)$, соответствующий пику ТДСспектра J(T(t)). По информации T(t), J(t), $D(t) \equiv D(T(t))$ определим функции $J_n(t)$. Авторы пользовались свободно распространяемый пакет Scilab для численного интегрирования линейных дифференциальных уравнений (нормированных на J_{\max}).

 2° . Суммируя достаточное количество J_n (процесс установления вычислений зависит от материала и условий эксперимента), находим концентрацию

$$c_0(t) \approx \overline{c} - 2\ell^{-1}S - 4\ell^{-1} \{ J_2(t) + \dots + J_{2k}(t) \}, \quad S(t) \equiv \int_0^t J(\tau) \, d\tau.$$

3°. Идентификация модели сводится к подбору параметров b_0 , E_b из условия $J(t) = b_0 \exp\{-E_b/[RT]\}c_0^2(t), t \in [t_1, t_2]$. Ориентируясь для определенности на значения E_b в несколько десятков кДж, представим экспоненту в нормированной форме $u^{\nu}(t)$, где $u(t) \equiv \exp\{-10^3/[RT(t)]\}, (E_b = \nu \kappa Дж)$. После логарифмирования приходим к линейному по $\ln b_0$ и ν соотношению:

$$\Lambda(t) \equiv \ln \left\{ J(t) c_0^{-2}(t) \right\} = \ln b_0 + \nu \ln u(t) = \ln b_0 - \nu 10^3 [RT(t)]^{-1}.$$

На плоскости $\{x, y\} \equiv \{10^3 T^{-1}, \Lambda\}$ имеем отрезок прямой, по пересечениям которой с осями координат $\{\overline{x}, \overline{y}\}$ находим значения $\ln b_0 = \overline{y}, \ \nu = R \overline{y}/\overline{x}$ (а значит и b_0, E_b). Аппроксимацию данных прямой можно строить и в координатах $\{T, \Lambda T\}$.

Алгоритм апробирован на экспериментальных данных по никелю и вольфраму.