ОБОЗРЕНИЕ прикладной и промышленной

МАТЕМАТИКИ

Том 23

триваются в [2, 4].

2016

Выпуск 1

В. Г. Высотина (Москва, ТВП). Моделирование закрученного те-

чения воздуха в длинной трубе с выемкой методом Годунова. Выполнено моделирование закрученного течения воздуха в осесимметричной трубе с выемкой методом Годунова [1, 3]. Постановка задачи опубликована в [5]. Задачи течения жидкости в каналах с внезапным расширением, с выемками и т.д. рассма-

Геометрия канала (длина канала L = 1 м, радиус входного и выходного цилиндра 0,04 м, радиус выемки 0,08 м) и разностная сетка (200×24 ячейки) представлены на рис. 1.

Рис. 1. Геометрия осесимметричного канала с выемкой. Разностная сетка 200 × 24 ячейки равномерная по длине и сгущающаяся к оси и внешнему обводу канала по высоте

Данные расчеты выполнялись для трех отношений давлений $P_{\rm вых}/P_0 = 0,990, 0,980, 0,975$ при следующих параметрах торможения: $P_0 = 1042399, 8$ Па; $\rho_0 = 1,1985$ кг/м³; $\varkappa = 1,4$; $R_G = 287,15$ м²/(с² K[°]); ${\rm Re} \approx 10^4 - 10^5$. Рассмотрены два случая: течение без закрутки и с закруткой потока на входе $\alpha = 10^0$.

Структура течения, полученная в канале в результате расчетов без закрутки $\alpha = 0^0$ при $P_{\text{вых}}/P_0 = 0,990,0,980,0,975$ показана на рис. 2, 3, 4.

Рис. 2. Поле векторов скорости и границы зон возвратного течения. $P_{\rm \tiny Bbix}/P_0=0,990,$ $\alpha=0^0$

[©] Редакция журнала «ОПиПМ», 2016 г.

Рис. 3. Поле векторов скорости и границы зон возвратного течения. $P_{\rm bbix}/P_0=0,980,$ $\alpha=0^0$

Рис. 4. Поле векторов скорости и границы зон возвратного течения. $P_{\rm bbix}/P_0=0,975,$ $\alpha=0^0$

Из рисунков видно, как с уменьшением отношения давлений $P_{\rm вых}/P_0$ изменяется структура течения потока в канале: зона возвратного течения на оси, ближе к выходу, уменьшается, а около внешнего обвода канала, на входе в углу выемки, новая возвратная зона появляется.

Структура течения, полученная в канале в результате расчетов с закруткой $\alpha = 10^0$ при $P_{\text{BMX}}/P_0 = 0,990,0,980$, и 0,975 показана на рисунках 5, 6, 7.

Рис. 5. Поле векторов скорости и границы зон возвратного течения. $P_{\rm \tiny BMX}/P_0=0,990$ $\alpha=10^0$

Рис. 6. Поле векторов скорости и границы зон возвратного течения. $P_{\rm BLIX}/P_0=0,980,$ $\alpha=10^0$

Рис. 7. Поле векторов скорости и границы зон возвратного течения. $P_{\rm \scriptscriptstyle Bbix}/P_0=0,975,$ $\alpha=10^0$

Закрутка потока на входе приводит также к изменению структуры потока. При отношении давлений $P_{\rm Bbix}/P_0 = 0,990$, зона возвратного течения у оси увеличивается на длину выемки. При отношениях давлений $P_{\rm Bbix}/P_0 = 0,980$ и 0,975 зона отрыва на оси канала уменьшается, а внутри выемки увеличивается с уменьшением $P_{\rm Bbix}/P_0$. Кроме того, во всех случаях, на оси канала на входе имеется сильное возвратное течение.

СПИСОК ЛИТЕРАТУРЫ

- Годунов С. К. и др. Разностная схема для двумерных нестационарных задач газовой динамики и расчет обтекания с отошедшей ударной волной. — ЖВМ и МФ, 1961, т. 1, № 3, с. 1020–1050.
- 2. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973.
- 3. Дорфман Л.А. Численные методы в газодинамике турбомашин. Л.: Энергия, 1974.
- 4. Гупта А., Лилли Д., Сайред Н. Закрученные потоки. М.: Мир, 1987, 588 с.
- 5. *Высотина В. Г.* Течение воздуха в осесимметричных каналах переменного сечения с выемками и кавернами. Математическое моделирование, 2001, т. 13, № 10, с. 103–119.
- 6. Высотина В. Г. Численное исследование влияния отношения давлений на осесимметричный распад вихря в трубе методом Годунова. Обозрение прикл. и промышл. матем., 2012, т. 19, в. 2, с. 242–244.