ОБОЗРЕНИЕ

прикладной и промышленной

Том **23** МАТЕМАТ**И**К**И**

Выпуск 5

2016

А. Ю. Нестеренко (Москва, НИУ ВШЭ). Об одном подходе к построению схем шифрования с возможностью аутентификации.

В работе предлагается подход к построению режима работы произвольного блочного шифра, позволяющего одновременно зашифровыввать сообщения и вычислять их код аутентичности. Предлагаемый подход основан на использовании универсальных функций хеширования с заданными свойствами.

Пусть w,m натуральные числа, \mathbb{V}^w — пространство двоичных векторов длины m и $\mathbb{V}^\infty \supset \mathbb{V}^w$ — пространство двоичных векторов произвольной длины.

Под режимом шифрования с возможностью аутентификации мы рассматриваем следующее отображение.

AEAD:
$$\mathbb{V}^m \times \mathbb{V}^m \times \mathbb{V}^\infty \times \mathbb{V}^\infty \times \mathbb{V}^{2w} \to \mathbb{V}^\infty \times \mathbb{V}^{2w}$$
,
AEAD $(K_1, K_2, X, M, iv) = \{C, a\}$, (1)

где $X\in\mathbb{V}^\infty$ открытый текст, $M\in\mathbb{V}^\infty$ — ассоциированные с открытым текстом X данные, $C\in\mathbb{V}^\infty$ зашифрованный текст, $K_1\in\mathbb{V}^m$ — ключ шифрования, $K_2\in V^m$ — ключ аутентификации, $iv\in\mathbb{V}^{2w}$ — случайный вектор (синхропосылка) и $a\in\mathbb{V}^{2w}$ — код аутентичности сообщения X.

Для того, чтобы определить отображение (1) нам потребуется ряд вспомогательных определений. Обозначим $E(K,x): \mathbb{V}^m \times \mathbb{V}^w \to \mathbb{V}^w$ произвольный блочный шифр и $\pi(z_1,z_2): \mathbb{V}^w \times \mathbb{V}^w \to \mathbb{V}^{2w}$ нелинейное отображение, являющееся перестановкой на множестве \mathbb{V}^{2w} . Пример такой перестановки был приведен автором в работе [1]. Введем отображение

$$\Omega: \mathbb{K} \times \mathbb{V}^{2w} \times \mathbb{V}^{4w} \to \mathbb{V}^{2w} \times \mathbb{V}^{2w},$$
$$\Omega(K, x, \gamma) = \{c, a\},$$

где $\gamma = (k_1, \dots, k_4)$ вектор размерности четыре, $k_1, \dots, k_4 \in \mathbb{V}^w$, и

$$\xi_1 = E(K, x_1 \oplus k_1), \quad \xi_2 = E(K, x_2 \oplus k_3), \quad x = x_1 || x_2,$$

$$c = k_1 \oplus \xi_1 || k_3 \oplus \xi_2, \quad a = \pi(\xi_1 + k_2, \xi_2 + k_4).$$

Отображение Ω представляет собой процедуру зашифрования двух блоков открытого текста $x=x_1||x_2|$ с одновременным вычислением контрольной суммы a этих блоков. Схематично, отображение Ω можно изобразить следующим образом.

[©] Редакция журнала «ОПиПМ», 2016 г.

Опишем способ генерации ключевой последовательности k_n , используемой в преобразовании Ω и вырабатываемой с помощью исходной синхропосылки $iv \in \mathbb{V}^{2w}$ и ключа аутентификации $K_2 \in \mathbb{V}^m$. Определим $k_{-1} = E(K_2, \mathrm{lsb}_w(iv))$ и $k_0 = E(K_2, \mathrm{msb}_w(iv))$, тогда

$$k_{2n-1} = k_{2n-3} + nC \pmod{2^w},$$

 $k_{2n} = k_{2n-2}\theta^n,$

где C фиксированная константа, а θ примитивный элемент поля \mathbb{F}_{2^w} .

Представим ассоциированные данные $M=(m_1,\ldots,m_u)$ и открытый текст $X=(x_1,\ldots,x_t)$ в виде последовательности блоков длины 2w. Тогда мы можем определить режим шифрования с возможностью аутентификации следующей последовательностью шагов.

- 1. Для всех $n=1,\ldots,u$ применим преобразование $\Omega(K_2,m_n,\gamma_n)=(\cdot,a_n)$, где $\gamma_n=(k_{4n-3},\ldots,k_{4n})$, и определим значение a равенством $a\equiv\sum_{n=1}^u a_n\pmod{2^{2w}}$.
- 2. Если $0 < \text{len}(x_t) < 2w$, то определим $t^* = t 1$. В противном случае, определим $t^* = t$.
- 3. Для всех $n = 1, ..., t^*$ применим преобразование $\Omega(K_1, x_n, \gamma_{u+n}) = (c_n, a_{u+n})$ и определим значение a равенством $a \equiv a + \sum_{n=1}^{t^*} a_{u+n} \pmod{2^{2w}}$.
- 4. Если $t^* = t-1$, то определим $x_t^* = x_t || \mathrm{msb}(c_{t-1})$, применим преобразование $\Omega(K_1, x_t^*, \gamma_{u+t}) = (c_t^*, a_{u+t})$, определим значение a равенством $a \equiv a + a_{u+t} \pmod{2^{2w}}$ и положим $c_t = \mathrm{lsb}(c_{t-1})$, $c_{t-1} = c_t^*$.
- 5. Вычислим $\Omega(K_2, a, \gamma_{u+t+1}) = (A, \cdot)$ и определим код аутентичности сообщения X равным A. При этом, величины c_1, \ldots, c_t образуют зашифрованный текст, соответствующий сообщению X.

Верна следующая теорема.

Теорема. Пусть отображение E(K,x) представляет собой перестановку на множестве \mathbb{V}^w для любого фиксированного значения K. Тогда, для любого натурального числа t и любых фиксированных значений K_1,K_2,M,iv и A найдется в точности $2^{2w(t-1)}$ сообщений X таких, что $\operatorname{len}(X)=2^{2wt}$ и $\operatorname{AEAD}(K_1,K_2,M,X,iv)=A$.

СПИСОК ЛИТЕРАТУРЫ

1. *Нестверенко А. Ю.* Об одном семействе универсальных функций хеширования. — Математические вопросы криптографии, 2015, т. 6, в. 3, с. 135–151.