ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ Выпуск 1

Том 23 МАТЕМАТИКИ

2016

А. Р. Симонян, Е. И. Улитина (Сочи, СГУ). Анализ времен ожидания модели Прабху при фиксированных загрузках.

Модель $\mathbf{M}_r |\mathbf{G}_r| 1 | \infty$. В одноканальную систему обслуживания с ожиданием поступают независимые пуассоновские потоки 1-вызовов, $\ldots,\ r$ -вызовов с параметрами $a_1 > 0, \dots, a_r > 0$ соответственно. Длительности обслуживания вызовов независимы, не зависят от процесса поступления и для k-вызовов, $k = \overline{1,r}$, имеют функцию распределения $B_k(x), B_k(+0) = 0.$

Абсолютные приоритеты. Из очереди i-вызов поступает на обслуживание раньше j-вызова, если i < j. Но допускается прерывание обслуживания. При поступлении в систему i-вызова обслуживание j-вызова при i < j прерывается и начинается обслуживание і-вызова. Прерванный вызов при новом поступлении на прибор дообслуживается заново, дообслуживается с прерванного места или уходит из системы без дообслуживания.

Дисциплина Прабху. [1] Поступая в момент t в модель, k-вызов $(k=\overline{1,r})$, приобретает индекс $t+u_k$, где $0 \le u_1 \le u_2 \le \cdots \le u_r$. В любой момент на приборе находится вызов с наименьшим индексом. Параметры $v_k = u_k - u_{k-1}, \ k = \overline{2,r}$ определяют дисциплину. Случаи $v_k = 0$ и $v_k \to +\infty$, $k = \overline{2,r}$ дают дисциплины FIFO и относительных приоритетов.

Модель Прабху (порядка r) Модель $\mathbf{M}_r|\mathbf{G}_r|1|\infty$ + дисциплина Прабху.

Характеристики. $\overline{w_k}(t)$ $(k=\overline{1,r};\ t\geqslant 0)$ — условное виртуальное время ожидания (УВВО) k-вызова в момент t, при условии прекращения с момента t доступа вызовов в модель; ρ_{k1} — загрузка модели 1-вызовами, . . . , k-вызовами (1, kвызовами); $\rho_k = 1 - \rho_{k1}$ — недогрузка системы $\overline{1,k}$ -вызовами.

Цель исследования. Асимптотический анализ $\overline{w_k}(t)$ и вектор процессов $(k=\overline{1,r})$

$$(\overline{w_k}(t-\alpha_{2k}),\ldots,\overline{w_k}(t-\alpha_{kk}),\overline{w_k}(t))$$
 (B.1)

при фиксированных загрузках $0 < \rho_{k1} < \cdots < \rho_{r1}, \ \rho_{r1} \geqslant 1$ и $t \to +\infty$, где $\alpha_{jk} =$ $v_j + \cdots + v_k, \quad (j = \overline{2,k}).$

Обзор. Интегральные представления и стационарные ФР для векторов a) $(w_1(t),\ldots,w_r(t))$, δ) $(\overline{w_1}(t),\ldots,\overline{w_r}(t))$,

где $w_i(t), i = \overline{1,t}$ — виртуальное время ожидания i-вызова в момент t, найдены в диссертации С. Н. Сандряна [2]. Асимптотические результаты разрозненны, относятся к случаю $ho_{r1}=1$ (случай $ho_{r1}>1$ не был рассмотрен) и получены при наличии условия: при $s\downarrow 0$ имеет место представление

$$\sum_{k=1}^{r} a_k \int_0^\infty e^{-sx} dB_k(x) = \sigma - \rho_{r1} s + B s^{\gamma} (1 + o_s(1)),$$
 (B.2)

где $\sigma = a_1 + \dots + a_r, \ 1 < \gamma \leqslant 2, \ B > 0.$

В [2] при $\rho_{r1} = 1$, условии (В.2) и $t \to +\infty$:

[©] Редакция журнала «ОПиПМ», 2016 г.

- ullet получены предельные ΦP векторов a) и б), когда параметры v_2,\dots,v_r фиксированы:
 - ullet найдена для $\overline{w_k}(t)/t^*$, где $t^*=(Bt)^{1/\gamma}$, предельная ФР при условиях

$$c_i = \lim_{t \to +\infty} (v_i/t^*) < +\infty, \qquad i = \overline{k+1,r};$$
(B.3_k)

 \bullet для вектора $(\overline{w_1}(t)/t^*, (\ \overline{w_2}(t)/t^*)$ при r=2 и (В.31) доказана предельная теорема

Метод анализа основан на уравнениях в терминах случайных величин (СВ), которые связывают $\overline{w_k}(t)$ в модели Прабху со следующими процессами в модели $M_r|G_r|1|\infty$ с абсолютными приоритетами $(k=\overline{1,r},\ 0\leqslant u\leqslant t)$:

- $b_k(u,t)$ время обслуживания поступивших за [u,t) $\overline{1,k}$ -вызовов;
- $\pi_k(t)$ период занятости (ПЗ) $\overline{1,k}$ -вызовов с задержкой t;
- $I_k^u(t)$ при наличии начальной задержки u время из [u,t), когда модель свободна от $\overline{1,k}$ -вызовов;
 - $\overline{w_k^0}(t)$ YBBO k-вызова в момент t.

Уравнения. Введем события $(k = \overline{1, r-1}; \ 0 \leqslant v \leqslant t)$:

$$A_k(t,v) = \{\pi_k(\overline{w_{k+1}}(t) \geqslant v)\}, \quad \overline{A_k}(t,v) = \{\pi_k(\overline{w_{k+1}}(t) < v)\}$$

Тогда $\overline{w_r}(t) = \overline{w_r^0}(t)$ и для $k = \overline{1,r-1}$

$$\overline{w_k}(t) = \begin{cases} \overline{w_{k+1}}(t - v_{k+1}) + b_k(t - v_{k+1}, t) - v_{k+1} \text{ Ha } A_k(t - v_{k+1}, v_{k+1}), \\ \overline{w_k^0}(v_{k+1} - \pi_k(\overline{w_{k+1}}(t - v_{k+1}))) \text{ Ha } \overline{A_k}(t - v_{k+1}, v_{k+1}). \end{cases}$$
(B.4)

Уравнения (В.4) получены в [2]. Они используются в случае $\rho_{r1} \leqslant 1$. В случае $\rho_{r1} > 1$ предлагаются уравнения $k = \overline{1, r-1}$:

$$\overline{w_k}(t) = \overline{w_{k+1}}(t - v_{k+1}) + b_k(t - v_{k+1}, t) - v_{k+1} + I_k^{\theta}(v_{k+1}), \tag{B.5}$$

где $\overline{w_{k+1}}(t-v_{k+1})$.

Условия на процесс загрузки:

- при $\rho_{r1} = 1$ выполнено условие (B.2);
- при $ho_{r1}>1$ и $s\downarrow 0$ имеют место представления

$$\sum_{m=1}^{i} a_m \int_0^\infty e^{-sx} dB_m(x) = \sigma_i - \rho_{i1}s + B_i s^{\gamma} (1 + o_s(1)), \quad i = \overline{k, r},$$
 (B.2_k)

где $\sigma_i = a_1 + \dots + a_i$, $1 \geqslant \gamma < 2$, $0 < B_k \leqslant \dots \leqslant B_r \stackrel{\text{def}}{=} B$.

Условия на параметры:

- 1) Упрощающие условия: $v_i \to +\infty$, $t \alpha_{2r} \to +\infty$, когда $t \to +\infty$.
- 2) Существуют пределы $(m=\overline{k,r})$: либо

$$M_m = \lim_{t \to +\infty} (s_m(t)/t^{1/\gamma}), \tag{B.6_k}$$

либо

$$R_m = \lim_{t \to +\infty} (s_m(t)/(\widehat{B}_m(t))^{1/\gamma}), \tag{B.7_k}$$

где обозначено

$$s_m(t) = -\rho_r t - \sum_{i=m}^{r-1} (\rho_i - \rho_r) v_{i+1}, \quad \widehat{B}_m(t) = Bt + \sum_{i=m}^{r-1} (B_i - B) v_{i+1}.$$

Предельные законы строятся с помощью ФР.

1. $G_{\gamma}(x)$. $G_{\gamma}(x) = 0$ при $x \leq 0$ и

$$\int_0^\infty e^{-sx} d\widetilde{G}_{\gamma} = e^{s^{\gamma}} \left\{ 1 - \frac{s}{\Gamma(1/\gamma)} \int_0^1 e^{-s^{\gamma} u} u^{-(1-1/\gamma)} du \right\}, \quad s \geqslant 0,$$

где $\Gamma(\cdot)$ — гамма-функция.

2. $G_{\gamma}(x)$. $G_{1/\gamma}(x)=0$ при $x\leqslant 0$ и

$$\int_0^\infty e^{-sx} dG_{1/\gamma}(x) = \exp\{-s^{1/\gamma}\}, \quad s \geqslant 0.$$

3. $G_{\gamma}(x)$.

$$\int_{-\infty}^{+\infty} e^{i\tau x} dG_{\gamma}(x) = \exp\{-(-i\tau)^{\gamma}\} \quad i = \sqrt{-1}, \quad \tau \in (-\infty, +\infty).$$

4. $\overline{W}_k^0(x)$ — стационарная ФР $\overline{w}_k^0(t)$ при $t \to +\infty$.

Все ФР имеют плотности, обозначаемые малыми буквами с теми же индексами.

Основные результаты.

 1° . Теорема 1. $\overline{w_k}(t)$ удовлетворяет закону больших чисел: npu $t \to +\infty$

$$\frac{\overline{w_k}(t) - \max(0, s_k(t))}{t} \stackrel{\text{p}}{\to} 0,$$

 $z \partial e \stackrel{\mathrm{P}}{ o}$ знак сходимости по вероятности.

В частности, если

$$\limsup_{t \to +\infty} s_k(t)/t < 0,$$
(1)

mo

$$(\overline{w_k}(t)/t) \stackrel{\text{p}}{\to} 0.$$
 (2)

Теорема 2. При условии (1) равномерно по $x \in (-\infty, +\infty)$ существует предел

$$\lim_{t \to \infty} \mathbf{P} \left\{ \overline{w_k}(t) < x \right\} = \overline{W}_k^0(x). \tag{3}$$

 2° . Приведем одно утверждение из [2]:

Теорема. Пусть $\rho_{r1}=1$, выполнено условие (B.2) и существуют пределы $(B.3_k)$. Тогда равномерно по $x \in [0, +\infty)$ существуют пределы

$$\lim_{t \to +\infty} \mathbf{P} \left\{ \frac{\overline{w_k}(t)}{(Bt)^{1/\gamma}} < x \right\} = \widetilde{G}_{\gamma}(x - R_k)$$
 (4)

 $e \partial e \ R_k = -\sum_{m=k}^{r-1} \rho_m c_{m+1}.$

Условия (В.3 $_k$) равносильны существованию и конечности пределов(В.6 $_k$) , при-

$$c_{m+1} = -\frac{M_{m+1} - M_m}{\rho_m} B^{-1/\gamma}.$$

Предельное соотношение (4) в этих условиях равносильно следующему: при x> $-R_k$

$$\lim_{t \to +\infty} \mathbf{P} \left\{ \frac{\overline{w_k}(t) - s_k(t)}{(Bt)^{1/\gamma}} < x \right\} = \widetilde{G}_{\gamma}(x). \tag{5}$$

Следующая теорема 3 содержит утверждение С. Н. Сандряна и при условиях (В.2) и $\rho_{r1}=1$ описывает все предельные ΦP для $\overline{w_k}(t)$.

Теорема 3. Пусть $\rho_{r1} = 1$, имеет место (В.2) и существует предел

$$M_k = \lim_{t \to +\infty} (s_k(t)/t^{1/\gamma}). \tag{6}$$

- а) Если $M_k>-\infty$, то равномерно по x существует предел (5), равный нулю при $x\leqslant -R_k$.
 - b) Если $M_k=-\infty,$ то равномерно по x существует предел (3). Здесь $R_k=B^{-1/\gamma}M_k.$
- $3^{\circ}.$ При условиях (В.2 $_k$) и $\,\rho_{r1}>1\,$ опишем класс предельных ФР для $\,\overline{w_k}(t),\,k< r.$

Теорема 4. Пусть выполнены условия $(B.2_k)$, $\rho_{r1} > 1$ и существует предел (6).

а) Если $M_k=+\infty$, то равномерно по $x\in (-\infty,+\infty)$ существует предел

$$\lim_{t \to +\infty} \mathbf{P} \left\{ \frac{\overline{w_k}(t) - s_k(t)}{(\widehat{B}_k(t))^{1/\gamma}} < x \right\} = G_{\gamma}(x).$$

б) Если $M_k = -\infty$, то равномерно по $x \in (-\infty, +\infty)$ существует предел (3). В частности, пункт а) теоремы 4 исчерпывает случай $\rho_{r1} > 1$.

Свойства условий $(B.6_k)$ и $(B.7_k)$.

1. При существовании пределов (B.6 $_k$) и (B.7 $_k$)

$$M_k \leqslant \cdots \leqslant M_r \quad (R_k \leqslant \cdots \leqslant R_r).$$

Более того, условие $M_m = +\infty$ ($M_m = -\infty$) равносильно условию $R_m = +\infty$ ($R_m = -\infty$). Пусть найдется такое $n, k \leq n < r$, что $\rho_{n1} < 1, \rho_{n+11} \geqslant 1$ и существует предел

$$\widehat{B}_{n+1} = \lim_{t \to +\infty} (\widehat{B}_{n+1}(t)/t). \tag{7}$$

2. Группа условий: существуют пределы $(B.6_k)$,

$$s_{n+1} = \lim_{t \to +\infty} (s_{n+1}(t)/t) \tag{8}$$

И

$$M_k > -\infty, \quad M_n < +\infty, \quad M_{n+1} = +\infty$$
 (9)

равносильна группе условий

$$c_{n+1} = \lim_{t \to +\infty} \left(s_{n+1}(t) / \widehat{B}_{n+1}(t) \right) \tag{10}$$

И

$$R_k > -\infty, \quad R_n < +\infty, \quad R_{n+1} = +\infty.$$
 (11)

Более того, $(m = \overline{k,n})$:

$$R_m = \left(\widehat{B}_{n+1} + \frac{B - B_n}{n - \rho_r} s_{n+1}\right)^{-1/\gamma} M_m, \quad s_{n+1} = c_{n+1} \widehat{B}_{n+1}.$$

3. Пусть найдется такое $n, \ k \leqslant n < r,$ что $\rho_{n1} = 1.$ Пределы (7), (8), (10) существуют, причем

$$\widehat{B}_{n+1} = B, \quad s_{n+1} = -\rho_r, \quad c_{n+1} = -\frac{\rho_r}{D}.$$

4. Группа условий: существуют пределы $(B.6_k)$ и имеет место (9) равносильна группе условий: существуют пределы $(B.7_k)$ и имеет место (11). Более того,

$$R_m = M_m B_n^{-1/\gamma}, \quad 0 \leqslant R_m < +\infty.$$

Условия A(n). Пусть выполнены условия $(B.2_k)$, найдется такое $n, k \leq n < r$, что $\rho_{n1} < 1$, $\rho_{n+11} \geqslant 1$, существуют пределы (B.7_k), (10) и имеет место (11).

Обозначим

$$\lambda_n = \frac{B_n c_{n+1}}{(\rho_n - \rho_r) - (B - B_r) c_{n+1}},$$

$$R_{kn} = R_n + \rho_r \sum_{i=k}^{n-1} \frac{R_{i+1} - R_i}{\rho_i - \rho_r}$$
(12)

и введем ФР

$$F_{\gamma}(R_m, m = \overline{k, n} : x) = \begin{cases} G_{\gamma}(-R_{kn}) + \int_{-R_{kn}}^{+\infty} G_{\gamma}\bigg(\frac{x - u\lambda_n^{1/\gamma}}{(1 - \lambda_n)^{1/\gamma}}\bigg) dG_{\gamma}(u) & \text{при} \quad x > -R_k, \\ 0 & \text{при} \quad x \leqslant -R_k. \end{cases}$$

Теорема 5. При условиях A(n) равномерно по $x\in (-\infty,+\infty)$ существует предел

$$\lim_{t \to +\infty} \mathbf{P} \left\{ \frac{\overline{w_k}(t) - s_k(t)}{(\widehat{B}_k(t))^{1/\gamma}} < x \right\} = F_{\gamma}(R_m, m = \overline{k, n} : x).$$

Теорема 6. Если в условиях теоремы 5 $c_{n+1}=0$, то равномерно по $x\in$ $(-\infty, +\infty)$ существует предел

$$\lim_{t \to +\infty} \mathbf{P} \bigg\{ \frac{\overline{w_k}(t) - s_k(t)}{(\widehat{B}_k(t))^{1/\gamma}} < x \bigg\} = \begin{cases} G_{\gamma}(x) & \text{при} \quad x > -R_k \\ 0 & \text{при} \quad x \leqslant -R_k. \end{cases}$$

Условия B(n). Пусть выполнены условия $(B.2_k)$, найдется такое $n, k \leq n < r$, что $\rho_{n1} = 1$, существуют пределы (B.6_k) и имеет место (9). Введем ФР

$$F_{\gamma}(R_k, R_{kn}, x) = \begin{cases} \widetilde{G}_{\gamma}(R_{kn}, x) & \text{при } x > -R_k \\ 0 & \text{при } x \leqslant -R_k. \end{cases}$$

где

$$\widetilde{G}_{\gamma}(R_{kn},x) = G_{\gamma}(x) - \int_{0}^{1} [G_{\gamma} - \widetilde{G}_{\gamma}] ((x + R_{kn})(1 - w)^{-1/\gamma}) d_{w} G_{1/\gamma}(w R_{kn}^{-\gamma}).$$

Теорема 7. При условиях A(n) равномерно по $x \in (-\infty, +\infty)$ существует предел

$$\lim_{t \to +\infty} \mathbf{P} \left\{ \frac{\overline{w_k}(t) - s_k(t)}{(B_k t)^{1/\gamma}} < x \right\} = F_{\gamma}(R_k, R_{kn}, x).$$

где

$$R_{kn} = B_n^{-1/\gamma} [M_n + \rho_r \sum_{i=k}^{n-1} \frac{M_{i+1} - M_n}{\rho_i - \rho_r}]$$
 u $R_k = B_n^{-1/\gamma} M_n$.

 $4^{\circ}.$ В условиях (В.2) и $\,\rho_{r1}\geqslant 1\,$ опишем предельные распределения вектора

$$(\overline{w_k}(t - \alpha_{2k}), \dots, \overline{w_k}(t - \alpha_{kk}), \overline{w_k}(t)$$
 при $k \leqslant r$. (13)

Формулировки указывают сходство случаев $\rho_{r1} = 1$ и $\rho_{r1} > 1$.

Пусть существуют пределы

$$\lim_{t \to +\infty} (v_n/t_{nk}) = d_n, \quad n = \overline{2, k}, \tag{14}$$

где $t_{nk}=t-\alpha_{n+1k}$, а последовательность d_2,\ldots,d_k имеет s-1 единиц на местах с номерами $m_1<\cdots< m_{s-1}$. Множество индексов $\{1,\ldots,k\}$ подразделим на группы

$$P_1 = \{1, 2, \dots, m_1 - 1\}, \quad P_2 = \{m_1, m_1 + 1, \dots, m_2 - 1\}, \dots, \quad P_s = \{m_{s-1}, m_{s-1} + 1, \dots, k\}.$$

Введем обозначение:

$$\overline{w_r}^*(t) = \frac{w_r(t) - \rho_r t}{(Bt)^{1/\gamma}}.$$

Теорема 8. При условиях $\rho_{r1}\geqslant 1$, (B.2) и (14) существует предел

$$F_{\gamma}(x_i, d_{i+1}: i = \overline{1, k}) \stackrel{\text{def}}{=} \lim_{t \to +\infty} \mathbf{P}\{\overline{w_r^*}(t - \alpha_{jk}) < x_j, j = \overline{1, k}\}$$

$$= \prod_{i=1}^{s} \lim_{t \to +\infty} \mathbf{P} \left\{ \overline{w_r^*}(t - \alpha_{jk}) < x_j, \ j \in P_i \right\}$$

где предельная ФР бесконечно дифференцируема по каждой переменной. ФР $F_{\gamma}(x_j,d_{j+1}:j\in P_i)$ для групп P_i однотипны: зависят от γ , числа индексов и констант d группы. Опишем ФР одной группы, положив без ограничения общности $P_1=\{1,2,\ldots,k\}$. Пусть последовательность d_2,\ldots,d_k имеет m-1 чисел e_1,\ldots,e_{m-1} из (0,1) на местах с номерами $r_1<\cdots< r_{m-1}$. Множество индексов $\{1,\ldots,k\}$ подразделим на группы $Q_1=\{1,2,\ldots,r_1\},\ Q_2=\{r_1+1,\ldots,r_2\},\ldots,Q_{m+1}=\{r_m+1,\ldots,k\},$ и положим $(n=\overline{1},m+1)$

$$\gamma_n = \min_{i \in Q_n} x_i.$$

Введем ФР: а) для любого u > 0

$$\widetilde{G}_{\gamma}^{u}(x) = G_{\gamma}(x-u) - \int_{0}^{1} [G_{\gamma} - \widetilde{G}_{\gamma}](x(1-w)^{-1/\gamma}) d_{w} G_{1/\gamma}(wu^{-\gamma}), \quad x \geqslant 0;$$

б) для $u \in (-\infty, +\infty)$

$$G_{\gamma}^{u}(x) = G_{\gamma}(x - u), \quad x \in (-\infty, +\infty).$$

Пусть $\tilde{g}^u_{\gamma}(x)$ и $g^u_{\gamma}(x)$ — соответствующие плотности и

$$f_{\gamma}(x) = \begin{cases} \widetilde{g}_{\gamma}(x) & \text{при} \quad \rho_{r1} = 1, \\ g_{\gamma}(x) & \text{при} \quad \rho_{r1} > 1, \end{cases} \qquad f_{\gamma}^{u}(x) = \begin{cases} \widetilde{g}_{\gamma}^{u}(x) & \text{при} \quad \rho_{r1} = 1, \\ g_{\gamma}^{u}(x) & \text{при} \quad \rho_{r1} > 1. \end{cases}$$

Теорема 9. При условиях $\rho_{r1} \geqslant 1$, (B.2), (14) и $P_1 = \{1, 2, \dots, k\}$.

$$F_{\gamma}(x_{i}, d_{i+1}: i = \overline{1, k}) = \int_{-\infty}^{\gamma_{1}} \cdots \int_{-\infty}^{\gamma_{m+1}} f_{\gamma}(u_{1})$$

$$\times \left\{ \prod_{j=2}^{m+1} e_{j-1}^{-1/\gamma} f_{\gamma}^{u_{j-1}(e_{j-1}^{-1})^{1/\gamma}} (u_{j} e_{j-1}^{-1/\gamma}) \right\} du_{1} \cdots du_{m+1}.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Прабху Н. У. Стохастические процессы теории запасов. М.: Мир, 1984, 184 с.
- 2. Cандрян C. H. Анализ модели Прабху. Дисс. на соискание уч. ст. канд. физ.-матем. наук. Ереван: ЕГУ, 1991, 136 с.