2016

Я. М. Агаларов (Москва, ФИЦ ИУ РАН). Об одной задаче максимизации дохода СМО типа G/M/1 с пороговой стратегией управления очередью.

Рассматривается СМО типа G/M/1 с накопителем бесконечной емкости и одним прибором обслуживания, на которую поступает рекуррентный поток заявок с функцией распределения вероятностей A(t). Время обслуживания заявки распределено по экспоненциальному закону с параметром $\mu > 0$. Поступившая заявка допускается в накопитель системы (занимает любое свободное место в накопителе), если в момент ее поступления число занятых мест в накопителе меньше k,k>0 — некоторое заданное целое число. Такую процедуру доступа заявок в систему называют пороговой стратегией управления доступом (далее для краткости — стратегией). Обозначим стратегию соответствующим пороговым значением k. Если заявка допущена в накопитель, она занимает любое свободное место в накопителе и обслуживается на приборе в порядке поступления. Заявка покидает систему только при завершении обслуживания, освободив одновременно прибор и накопитель, а на освободившийся прибор поступает очередная заявка из накопителя (если таковая есть). Система получает доход в стоимостных единицах, который определяется следующими составляющими:

 $C_0 \geqslant 0$ — плата, получаемая системой, если поступившая заявка будет обслужена системой (допущена в накопитель);

 $C_1 \geqslant 0$ — величина штрафа, который платит система, если поступившая заявка

 $C_2\geqslant 0$ — вычет из дохода системы за единицу времени ожидания заявки в системе;

 $C_3 \geqslant 0$ — вычет из дохода системы за единицу времени простоя прибора;

 $C_4 \geqslant 0$ — затраты системы в единицу времени на техническое обслуживание системы.

Под доходом системы будем понимать суммарный доход с учетом всех указанных выше составляющих.

Введем обозначения:

$$\overline{v} = \int_0^\infty t \, dA(t),$$

$$r_m = \int_0^\infty rac{(\mu t)^m}{m!} e^{-\mu t} dA(t)$$
 при $m\geqslant 0,$

 $\{\pi_i^k, 0 \leqslant i \leqslant k\}$ — стационарное распределение вероятностей состояний системы при стратегии k (состояние системы — число заявок, находящихся в системе в момент

[©] Редакция журнала «ОПиПМ», 2016 г.

поступления),

$$\overline{W}(k) = \overline{v} - \frac{1}{\mu} \left[\sum_{i=0}^{k-1} \pi_i^k \sum_{m=i+2}^{\infty} (m-i-1)r_m + \pi_k^k \sum_{m=k+1}^{\infty} (m-k)r_m \right],$$

$$F(k) = \frac{\overline{W}(k)}{\sum_{i=0}^{k-1} \pi_i^k \sum_{m=i+2}^{\infty} r_m + \pi_k^k \sum_{m=k+1}^{\infty} r_m,}$$

$$G(k) = C_0 + \frac{C_3}{\mu} - (C_3 + C_4)\overline{v} - C_2 r_0 F(k), \qquad k > 0,$$

 q_i^k — средний доход, получаемый системой в состоянии i при стратегии $k,i\geqslant 0,$ $Q^k=\frac{\sum_{i=0}^k \pi_i^k q_i^k}{\overline{v}}$ — предельное среднее значение дохода системы в единицу времени.

Предполагается, что $\overline{v} < \infty$, $r_m < \infty$, $m \geqslant 1$.

Ставится задача максимизации функции Q^k на множестве стратегий k>0. Пусть k^* — решение этой задачи (если оно существует).

Доказана следующая теорема.

Теорема 1. Справедливы утверждения: 1) если $\inf_{k>0} G(k) < \sup_{k>0} g^k$, то при любых значениях параметров $C_i \geqslant 0$, i = 0, 1, 3, 4, $C_2 > 0$ существует единственная стратегия $k^* < \infty$, иначе, если $g^1 < G(1)$, то $k^* = \infty$; 2) если $g^1 \geqslant G(1)$, то $k^* = 1$; 3) если $C_2 = 0$ и $g^1 < G(1)$, то $k^* = \infty$; 4) условие $g^{k-1} < g^k$, $g^{k+1} \geqslant g^k$ является необходимым и достаточным для $k = k^*, 1 < k^* < \infty$.

Из теоремы 1 следует оптимальность порогового значения $\,k^*,\,$ получаемого в результате работы следующего алгоритма:

- 1. Положить k=1.
- 2. Вычислить $a = g^k$, b = G(k).
- 3. Если $C_2=0$ и b>a то положить $k^*=\infty$ и перейти на пункт 7.
- 4. Если $a\geqslant b,$ то положить $k^*=1$ и перейти на пункт 7. 5. Вычислить $b=g^{k+1}.$
- 6. Если b > a, то положить k = k + 1, a = b и перейти на пункт 5, иначе положить $k^* = k$.
 - 7. Конец алгоритма.

Полученные результаты могут быть использованы для поиска оптимальных пороговых стратегий управления потоками в инфокоммуникационных системах, моделируемых с помощью СМО типа G/M/1 (G/M/1/r).

Исследование выполнено при поддержке РФФИ (проект 15-07-03406).