ОБОЗРЕНИЕ ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ

Том 26

МАТЕМАТИКИ

Выпуск 3

2019

В. Г. Высотина (Москва, ОПиПМ). Особенности структуры закрученного по закону твердого тела (вынужденный вихрь) течения воздуха в длинной трубе.

В работе представлены результаты изучения влияния такого типа закрутки на входе в трубу, как задание во входном сечении закрутки по закону твердого тела (вынужденный вихрь), на структуру течения воздуха в длинной трубе. При всех прочих равных условиях для трех разных значений отношения давлений $P_{\text{вых}}/P_0 =$ 0,990,0,980,0,970 получены решения со структурой, содержащей распад вихря в виде тороидальной зоны отрыва, обтекаемой закрученным основным потоком. Для расчетов использовался метод Годунова.

Постановка задачи опубликована в [4]. Результаты изучения распада вихря в прямой трубе методом Годунова [1, 2, 3] для постоянного во входном сечении угла закрутки $\alpha(tg(\alpha) = const)$ представлено частично в [5, 6, 7], там же представлено сравнение с опытными данными [4].

Моделирование закрученного течения воздуха выполнялось в осесимметричной трубе длиной 1 метр с радиусом 0,04 м [4]. Использована разностная сетка равномерная по длине N и сгущающаяся к оси и внешнему обводу M, состоящая из 201×21 узлов.

Расчеты течения воздуха проведены для отношений давлений $P_{\rm BMX}/P_0$ = 0, 990, 0, 980, 0, 970 Во входном сечении задавалась закрутка потока по закону твердого тела в диапазоне углов $\alpha = 10^{\circ} \div 87^{\circ}$. Использованы следующие параметры торможения: $P_0 = 100500, 8 \Pi a; \rho_0 = 1,1945 \, \mathrm{kr/m}^3; \varkappa = 1,4; R_G = 287,15 \, \mathrm{m}^2/(c^2 \cdot K^\circ);$ $Re \approx 10^4 - 10^5.$

На входе в канал задавался вид закрутки $Cn * tg(\alpha) * ri/R$ — для вынужденного вихря. Здесь α — угол закрутки ($\alpha = 10^{\circ} \div 87^{\circ}$), R — радиус внешнего обвода трубы, r_i — текущий радиус ($r_i = r_1 \div R = r_M$; $i = 1 \div MI$, MI = 20, M = 21), Cn — нормальная к входному сечению скорость, $tg(\alpha)$ — тангенс угла α .

Графики профиля окружной составляющей скорости для угла закрутки α = $10^\circ,$ соответствующие каждому значению отношения давлений $P_{\scriptscriptstyle\rm Bbix}/P_0\,$ показаны на рис. 1.

Рис. 1. Графики $UT/UZ_{\scriptscriptstyle\rm BX}\,$ для угла закрутки $\alpha=10^\circ,\,$ в сечениях 1–200 с шагом 10. Вид закрутки $Cn * tg(\alpha)ri/R$. Отношение давлений $P_{\text{вых}}/P_0 = 0,990, 0,980, 0,970$

Профили окружных скоростей соответствуют закрутке по закону твердого тела. Графики изменения расхода для каждого значения $P_{\rm Bbix}/P_0\,$ в зависимости от угла закрутки α приведены на рис. 2.

© Редакция журнала «ОПиПМ», 2019 г.

Рис. 2. Расход воздуха в зависимости от угла закрутки на входе α . Вид закрутки Cn*tg $(\alpha)ri/R$. Отношение давлений $P_{\text{вых}}/P_0 = 0,990(3),0,980,0,970(1)$

Течение при вынужденном вихре не имеет случаев отрицательного расхода. Поведение потока при всех прочих равных условиях для трех значений отношения давлений $P_{\rm BLX}/P_0 = 0,990, 0,980, 0,970$ при задании закрутки во входном сечении в виде вынужденного вихря — $(Cn*{\rm tg}(\alpha)*ri/R)$, похожее: в зависимости от изменения угла α всегда имеем положительный расход и три варианта структур течения. 1) $\alpha = 10^{\circ} \div 78^{\circ}$ — закрученное течение без особенностей. На рис. 3 — изменение полей скоростей в диапазоне углов от $\alpha = 20^{\circ}$ до 79° для $P_{\rm BLX}/P_0 = 0,990$. Аналогичная картина полей скоростей имеет место быть для $P_{\rm BLX}/P_0 = 0,980$ и 0,970.

Рис. 3. Поля скоростей:
а) $\alpha=20^\circ,$ b) $\alpha=45^\circ,$ с) $\alpha=79^\circ.$ Отношение давлени
й $P_{\rm Bbix}/P_0=0,990$

Профили окружных составляющих скорости для $\alpha = 70^{\circ}$ показаны на рис. 4.

Рис. 4. Профили окружных скоростей для $\alpha=70^\circ.$ Отношение давлений $P_{\rm Bbix}/P_0=0,990,$ 0,980,0,970

Профили окружных скоростей при $\alpha = 70^{\circ}$ не соответствуют закону твердого тела. 2) При углах $\alpha = 80^{\circ} \div 82^{\circ}$ происходит перестройка течения. На рис. 5 — поля скоростей для угла $\alpha = 80^{\circ}$.

Рис. 5. Поля скоростей: a) $\alpha = 80^{\circ}$ Отношение давлений $P_{\rm Bbix}/P_0 = 0,990,0,980,0,970$

В выходном сечении при $\alpha=80^\circ$ и всех трех значениях $P_{\rm вых}/P_0=0,990,0,980$ и0,970имеет место наличие диска тороидальной формы. Фрагменты выходного сечения поля скоростей для $\alpha=80^\circ$ показаны на рис.6.

Рис. 6. Фрагменты полей скоростей для $\alpha=80^\circ.$ Отношение давлений $P_{\rm Bbix}/P_0=0,990,$ 0,980,0,970

3) Для всех трех значений отношения давлений $P_{\rm BMX}/P_0=0,990,0,980$ и 0,970 при $\alpha=83^\circ\div87^\circ$ имеет место распад вихря в виде закрученного течения с замкнутой тороидальной зоной ("bagel"). С увеличением угла закрутки тороидальная зона уменьшается в продольных размерах и увеличивается по высоте. Поведение течения при $\alpha=85^\circ$ для $P_{\rm BMX}/P_0=0,990,0,980$ и 0,970 показано на рис. 7.

Рис. 7. Поля скоростей:
а) $\alpha=85^{\circ}.$ Отношение давлений $P_{\rm Bbix}/P_0=0,990,0,980,0,970$

В работе получены и представлены для вида закрутки по закону твердого тела $(Cn * tg(\alpha) * ri/R)$, заданного во входном сечении канала, поля скоростей и их фрагменты — структура течений и границы зон отрыва для трех значений отношения давлений $P_{\rm Bbix}/P_0 = 0,990, 0,980$ и 0,970 Поведение потока при всех прочих равных условиях одинаковое. Поля скоростей и распределение параметров (профили относительных окружных и осевых скоростей, давлений, изменение расхода в зависимости от величины угла и т.д.) по-хожие. Для вынужденного вихря (закон вращения твердого тела) закрутка задается в виде — $Cn * tg(\alpha) * ri/R$. При $\alpha = 80^{\circ}$ имеет место диск тороидальной формы в выходном сечении канала. Для всех трех значений отношения давлений $P_{\rm Bbix}/P_0 = 0,990, 0,980$ и 0,970 при $\alpha = 83^{\circ}$ впервые появляется замкнутая зона возвратного течения, имеющая форму тора ("bagel"), — рис. 7. Тороидальная зона отрыва имеется также при углах закрутки $\alpha = 84^{\circ} \div 87^{\circ}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Годунов С.К., Забродин А.В., Прокопов Г.П. Разностная схема для двумерных нестационарных задач газовой динамики и расчет обтекания с отошедшей ударной волной. Ж. вычисл. матем. и матем. физ., 1961, т. 1, № 3, с. 1020–1050.
- 2. Дорфман Л. А. Численные методы в газодинамике турбомашин. Л.: Энергия, 1974.
- 3. Высотина В. Г. Моделирование течения невязкого газа в осесимметричных каналах с поворотом потока на 180 и 540 градусов. Математическое моделирование, 1996, т. 8, № 10, с. 25-34.
- 4. Shigeo Uchida, Yoshiaki Nakamura, Masataka Ohsawa. Experiments on the Axisymmetric Vortex Breakdown in a Swirling Air Flow. Trans. Jap. Soc. Aeronaut. and Space Sci., 1985, 27, № 78, p. 206–216.
- 5. Высотина В. Г. Изменение локальных параметров потока воздуха при распаде вихря в трубе. — Обозрение прикл. и промышл. матем., 2015, т. 22, в. 4, с. 450–454.
- 6. Высотина В. Г. Численное исследование влияния отношений давлений на осесимметричный распад вихря в трубе методом Годунова. Обозрение прикл. и промышл. матем., 2012, т. 19, в. 2, с. 242–244.
- Высотина В. Г. Численное исследование структур распада вихря в длинной трубе. — Международная научная конференция по механике «Восьмые Поляховские чтения», 30 января–2 февраля 2018 г. Санкт-Петербург, Россия. Сборник тезисов, с. 103.
- 8. Гупта А, Лилли Д, Сайред Н. Закрученные потоки. М.: Мир, 1987, 588 с.