ОБОЗРЕНИЕ

прикладной и промышленной

Том 26 МАТЕМАТИКИ

Выпуск 4

2019

С. Б. Т а б а л д ы е в (Москва, МГТУ им. Н.Э. Баумана). Неаддитивность гомологических биразмерностей тензорных степеней некоторой алгебры функций.

Предположим, что A_1, A_2, \cdots, A_n — бипроективные функциональные банаховы алгебры. В работе [1] доказаны так называемые формулы аддитивности

$$\operatorname{db} A_1^+ \widehat{\otimes} A_2^+ \widehat{\otimes} \cdots \widehat{\otimes} A_n^+ = \operatorname{db} A_1^+ + \operatorname{db} A_2^+ + \cdots + \operatorname{db} A_n^+$$

Здесь $\widehat{\otimes}$ — проективное тензорное произведение банаховых алгебр, A^+ — унитализация алгебры A, $\operatorname{db} A$ — гомологическая биразмерность банаховой алгебры A. В теореме 1 мы докажем, что для произвольных ассоциативных алгебр над полем комплексных чисел гомологические биразмерности унитализаций бипроективных алгебр функций могут иметь свойства, наиболее далекие от аддитивности.

Пусть c_{00} — алгебра финитных последовательностей относительно поточечного умножения. Также мы обозначим через $c_{00}(S)$ алгебру финитных функций на множестве S относительно поточечного умножения.

Напомним важное понятие регулярного по фон Нойманну кольца, которое используется в доказательстве основной теоремы. Кольцо R называется peryлярным по фон Нойманну, если для любого $a \in R$ элемент a принадлежит множеству aRa. Далее регулярные по фон Нойманну кольца мы будем называть peryлярными. Хорошо известно, что алгебра комплексных последовательностей \mathbf{C}^{∞} с поточечным умножением является регулярной по фон Нойманну. Также известно, что регулярность сохраняется при переходе к биидеалам и расширениям колец (см. [2]).

Пемма 1. Для любого натурального n алгебра $(c_{00}^+)^{\otimes n}$ регулярна.

Доказательство. Алгебра $(c_{00})^{\otimes n}$ изоморфна алгебре $c_{00}(\mathbf{N}^n)$. Последняя алгебра является биидеалом в алгебре $\mathbf{C}^{\infty}(\mathbf{N}^n)$ и поэтому регулярна. Алгебра c_{00}^+ является расширением регулярных алгебр c_{00} и \mathbf{C} и, следовательно, также регулярна. Определим гомоморфизм

$$\gamma: (c_{00})^{\otimes k} \otimes (c_{00}^+)^{\otimes l} \rightarrow (c_{00})^{\otimes k} \otimes (c_{00}^+)^{\otimes (l-1)}$$

по формуле

$$\gamma(a\otimes (b+\lambda e)\otimes h)=\lambda a\otimes h\,,$$

где $a \in (c_{00})^{\otimes k}$, $b \in c_{00}^+$, $b \in c_{00}$, $\lambda \in \mathbf{C}$, $h \in (c_{00}^+)^{\otimes (l-1)}$, а e — присоединенная единица. Предположим, что

$$u = \sum_{j=1}^n a_j \otimes (b_j + \lambda_j e) \otimes h_j$$
 и $\gamma(u) = 0.$

Тогда

$$\sum_{i=1}^n \lambda_{\,j}\,a_{\,j}\otimes h_{\,j} = 0 \quad \text{ w} \quad u = \sum_{i=1}^n a_{\,j}\otimes b_{\,j}\otimes h_{\,j}.$$

Следовательно,

$$\operatorname{Ker} \gamma = (c_{00})^{\otimes (k+1)} \otimes (c_{00}^+)^{\otimes (l-1)}$$

20

[©] Редакция журнала «ОПиПМ», 2019 г.

Поэтому $(c_{00})^{\otimes k} \otimes (c_{00}^+)^{\otimes l}$ является расширением биидеала $(c_{00})^{\otimes (k+1)} \otimes (c_{00}^+)^{\otimes (l-1)}$ с помощью фактор-алгебры $(c_{00})^{\otimes k} \otimes (c_{00}^+)^{\otimes (l-1)}$. Используя индукцию по натуральному l, завершаем доказательство леммы.

Теорема 1. Для любого натурального n выполнено равенство

$$db \left(c_{00}^+\right)^{\otimes n} = 1.$$

Д о к а з а т е л ь с т в о. Пусть J — ядро канонического оператора умножения $\pi: (c_{00}^+)^{\otimes n} \otimes (c_{00}^+)^{\otimes n} \to (c_{00}^+)^{\otimes n}$, определенного формулой $\pi(a \otimes b) = ab \ (a,b \in (c_{00})^{\otimes n})$. Нетрудно видеть, что J как векторное подпространство $(c_{00}^+)^{\otimes 2n}$ имеет не более чем счетный линейный базис. По лемме Капланского ([3, Lemma 1]) любой счетно порожденный идеал регулярного кольца расклаывается в счетную прямую сумму идеалов, порожденных идемпотентами, и поэтому является проективным.

Из этого следует неравенство $\operatorname{db}\left(c_{00}^{+}\right)^{\otimes n} \leqslant 1.$

Чтобы доказать оценку снизу достаточно найти непроективный модуль. Пусть $\chi:c_{00}^+\to {\bf C}$ — характер, определенный по формуле $\chi(a+\lambda e)=\lambda$. Тогда его тензорная степень $\chi^{\otimes n}:(c_{00}^+)^{\otimes n}\to {\bf C}$ определяет внешнее умножение на ${\bf C}$ и становится морфизмом левых модулей.

Пусть $v: \mathbf{C} \to (c_{00}^+)^{\otimes n}$ — морфизм левых модулей. Тогда

$$e_{r_1} \otimes e_{r_2} \otimes \cdots \otimes e_{r_n} \cdot v(1) = v(e_{r_1} \otimes e_{r_2} \otimes \cdots \otimes e_{r_n} \cdot 1) = \chi(e_{r_1})\chi(e_{r_2})\cdots \chi(e_{r_n})v(1) = 0.$$

Поэтому морфизм $\chi^{\otimes n}$ не имеет левого обратного и модуль ${\bf C}$ не проективен. Теорема локазана.

Теорема 2. Пусть S — множество мощности $\aleph_k,\ k=0,1,\ldots;\ n\in {\bf N}.$ Тогда справедливо неравенство ${\rm db}\,c_{00}^+(S)^{\otimes n}\leqslant k+1.$

Доказательство. По [4, Corollary 2.47] если каждый идеал кольца R порожден не более чем \aleph_k элементами, то выполнено неравенство

$$dg R \leq wdg R + k + 1$$
,

где $\operatorname{wdg} R$ — глобальная плоская гомологическая размерность. Так же, как в теореме 1, можно доказать, что алгебра $c_0^+(S)^{\otimes n}$ регулярна. Как известно, все модули над регулярными кольцами плоские. Поэтому $\operatorname{wdg} R = 0$. Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Головин Ю. О., Хелемский А. Я. Гомологическая размерность некоторых модулей над тензорными произведениями банаховых алгебр. Вестник МГУ. Сер. матем., мех., 1977, № 1, с. 54–61.
- 2. Goodearl K. R. Von Neuemann Regular Rings. London e.a.: Pitman, 1979, xvii+369 p.
- 3. Kaplansky I. On the dimensions of modules and algebra, X. A right hereditary ring which is not left hereditary. Nagoya J. Math., 1958, v. 13, June, p. 85–88.
- Osofsky B. L. Homological Dimensions of Modules. Providence, RI: AMS, 1971, ix+89 p. (Ser. CMBS Region. Conf. Ser. Math. № 12.)

УДК 512.66, 512.71

 ${\it S.\,B.\,Tabaldyev}$ (Moscow, Bauman Moscow State Technical University). Non-additivity of homological bi-dimensions of tensor powers of some function algebra.

Abstract: Let A be a tensor power of the algebra of sequences constant at infinity, then db A=1, where db A is the homological bi-dimension of the Banach algebra A.

 ${\it Keywords} \hbox{: homological bi-dimension, projective module, von Neumann regular ring.}$