ОБОЗРЕНИЕ

ПРИКЛАДНОЙ И ПРОМЫШЛЕННОЙ МАТЕМАТИКИ Выпуск 3

2022

Том 29

В П. Зязин, **Ю. И.** Пастухова (Москва, РТУ МИРЭА, ЦЭМИ РАН). О читабельности математических тестов.

УДК 519.24; 51.77 DOI https://doi.org/10.52513/08698325_2022_29_1_1

Pезюме: По аналогии с индексом Рудольфа Флэша предложен подход к получению формулы расчета показателя удобочитаемости учебно-методических текстов по математическим дисциплинам, изучаемым в высших учебных заведениях.

Ключевые слова: читабельность, индексы удобочитаемости, logit-модель.

В связи с интенсивным использованием в течение последних двух лет технологий дистанционного обучения многие преподаватели столкнулись с проблемой подготовки теоретического материала и методических указаний к выполнению практических работ, адекватно воспринимаемых современными студентами. Хотя по опросам преподавателей никакие дистанционные формы проведения лекционных и практических занятий не обеспечивают им обратную связь с аудиторией, сопоставимую с традиционным очным форматом, однако дистанционный формат в некоторых случаях оказывается безальтернативным и будет сохранен наряду с очным. Поэтому проблема подготовки материалов в удобной для понимания форме остается по прежнему актуальной. Причем, ориентироваться приходится на современное молодое поколение, выросшее в век интернета, в большинстве своем мало читающее серьезную (да и любую другую) литературу, приученное к коротким сообщениям, к возможностям быстрого перехода по ссылкам, что не требует напряжения памяти для понимания текста. Настоящая работа посвящена изучению факторов, помогающих студентам воспринимать математическую информацию, и анализу моделей, оценивающих степень восприятия материала.

Американский писатель и ученый Рудольф Флеш в начале 40-х годов прошлого века придумал формулу для определения уровня удобочитаемости текста. Свои советы по составлению понятных текстов он изложил в своей книге (см. [1]). Индекс Флеша до настоящего времени является самым используемым для оценки читаемости и вычисляется по следующей формуле. Формула Рудодьфа Флеша:

$$FRE = 206,835 - (1.015 \times ASL) - (84.6 \times ASW),$$

где ASL — средняя длина предложения в словах, FSW — средняя длина слова в слогах. «Читаемость» или «читабельность» текста оценивается этой формулой от 1 до 100 баллов, более высокий балл соответствует более простому для восприятия тексту. Для проверки текста на читаемость короткие статьи, не превышающие 500 знаков, проверяются полностью. В длинных статьях выделяют для проверки 2–3 фрагмента длиной до 100 слов Принята следующая градация: FRE около 30 свидетельствует о трудностях текста, что соответствует научным и техническим статьям; значения свыше 90 характеризуют детскую литературу и комиксы; стандартный читабельный текст имеет показатели 60–70; интеллектуальные литературные и деловые журналы как правило имеют FRE 50–55.

Для английского языка разработано в последствии значительное количество разнообразных формул удобочитаемости. Имеются они, хотя и в меньшем количестве, и

[©] Редакция журнала «ОПиПМ», 2022 г.

для немецкого, шведского, португальского, японского и других языков.

Отдельного внимания заслуживает индекс «фога» или индекс туманности Геннинга, который широко используется в американской журналистике для оценки легкости восприятия текстов конкретной аудиторией. Индекс Геннинга:

$$Fi = 0.4 \times (Nws + Nwf).$$

Здесь Nws — среднее число слов в предложении текста, а Nwf — среднее число слов с длиной 3 и более слогов, приходящихся на одно предложение текста. Индекс Ганнинга демонстрирует уровень трудности текста, определяя минимальный возраст или уровень образования читателя текста. Оригинальная версия формулы Геннинга имеет вид:

$$0.4 \times (Nws + 100 \times Nwf),$$

Индекс меняется в диапазоне значений от 1 до 20. В отличие от других индексов удобочитаемости индекс туманности Геннинга может применяться и для оценивания русскоязычных текстов. Для русского языка вводится поправочный коэффициент, а именно формула принимает вид:

$$0.4 \times (0,78 \times \text{Nws} + 100 \times \text{Nwf}),$$

причем, под длинными словами теперь понимаются слова, состоящие более, чем из четырех слогов.

В литературе предлагается следующая интерпретация индекса Ганнинга (для CIIIA):

Выпускник колледжа	17
Студент 4 курса	16
Студент 3 курса	15
Студент 2 курса	14
Студент 1 курса	13
Учащийся 10–12 класса средней школы	12
Учащийся 8–10 класса средней школы	11
Учащийся 6-8 класса средней школы	10
Учащийся 4–6 класса средней школы	9
Учащийся 3-го класса средней школы	8
Учащийся 2-го класса средней школы	7
Учащийся 1-го класса средней школы	6

Для получения индекса читаемости математических текстов среди студентов 3 курса был проведен анкетный опрос. В опросе приняло участие 58 студентов, которые в текущем семестре изучают курс математической статистики. Им были предложены 6 отрывков из начала глав, посвященных теории статистического оценивания, которая на тот момент изучалась. Студенты должны были поставить 1, если считают отрывок удобочитаемым, и 0 в противном случае. Кроме того, им предлагалось оценить в процентах степень читаемости, оценивая читаемый текст свыше 50%, а неудобочитаемый ниже данного порога.

Лист опроса № 1

№ фрагмента	Читабельность (1/0)	% читабельности
1. (учебника по ТВ)		
2. (учебника по МС)		
3. (книги Г. Крамера)		
4. (справочника по ПС)		
5. (интернет ресурса)		
6. (интернет ресурса)		

Лист опроса № 2

Факторы влияния	Влияние на читабельность	Степень влияния		
	(+/-)	Слабая (1)	Умеренная (2)	Значитель- ная (3)
1. Длинные сложные предложения				
2. Много математических символов и формул				
3. Много специальных терминов				
4. Мало математических символов и формул				
5. Обилие различных знаков препинания				
6. Другое				

В графе «Другое» чаще всего указывались следующие факторы значительного положительного влияния на понимание текста: разбиение на небольшие абзацы, использование выделений слов и понятий; наличие схем, таблиц, рисунков; иллюстрация примерами. В качестве умеренного положительного влияния указано на отделение формул; удобное форматирование текста.

Отрицательное влияние на читабельность по мнению студентов оказывают: сокращения и аббревиатуры «значительно»; наличие ссылок и неудобный шрифт (умерено); переносы слов (незначительно).

Результаты первоначальной обработки анкет:

•	-	
№ фрагмента	Доля читабельности	Средний % читабельности
1. (учебника по ТВ)	0,862	69,931
2. (учебника по МС)	0,5	55,569
3. (книги Г. Крамера)	0,9483	70,7069
4. (справочника по ПС)	0,655	59,293
5. (интернет ресурса)	0,896	72,241
6. (интернет ресурса)	0,983	63,448

Факторы влияния	Средние значения факторов
1. Длинные сложные предложения	-1,27586
2. Много математических символов и формул	0,017241
3. Много специальных терминов	-0,56897
4. Мало математических символов и формул	0
5. Обилие различных знаков препинания	0,965517

Целесообразно выделить в качестве параметров будущей модели 1-й и 3-й факторы. Расчет их для каждого из текстовых фрагментов представлен в таблице:

№ фрагмента	1	2	3	4	5	6
Среднее количество слов в предложении	16,2857	20	19,72727	15,41667	20,6	14,7777
Доля математических терминов	0,16666	0,23	0,1198	0,173	0,262	0,3158

Расчет аналога индекса туманности Геннинга по двум выделенным выше факторам и сравнение с экспериментальными данными приведено в таблице:

№ фрагмента	Индекс	Доля	Средний %
	туманности	читабельности	читабельности
1. (учебника по ТВ)	11,74754	0,862	69,931
2. (учебника по МС)	15,44	0,5	55,569
3. (книги Г. Крамера)	10,94691	0,9483	70,7069
4. (справочника по ПС)	11,73	0,655	59,293
5. (интернет ресурса)	16,9072	0,896	72,241
6. (интернет ресурса)	17,24264	0,983	63,448

Для получения индекса читабельности по типу формулы Рудольфа Флеша «шкала от 1 до 100» оценены коэффициенты линейных моделей

$$y = k_1 x_1 + k_2 x_2 + b$$
 if $y = k_1 x_1 + k_2 x_2$.

Здесь зависимая переменная y — процент читабельности, а аргументы — указанные факторы. Модель с свободным членом показала неудовлетворительное описание результатов эксперимента ($R^2=0,114808999$)/Модель с b=0 вида

$$y = 3,125271869x_1 + 38,96159073x_2, \quad (R^2 = 0,886346154)$$

достаточно точно описывает полученные наблюдения.

Однако такого рода модели не гарантируют в общем случае получение результатов в проделах от 0 до 100 при применении их к различным текстам. Проблему можно решить, приравнивая «читабельность» к 100, если значение уравнения регрессии получится больше 100 и к 0, если значение окажется меньше 0. Но такие граничные значения не представляют интереса. Другой, на наш взгляд, перспективный подход состоит в применении моделей бинарного выбора, которые по значениям объясняющих переменных (x_1, x_2) и бинарной переменной (индикатору «читабельности» y позволяют построить модель для оценки вероятности события, в данном случае читабельности текста. Будем считать

$$y_i = \begin{cases} 1, & \text{если } i\text{-} \Bar{u} \text{ опрошенный считает текст читабельным} \\ 0, & \text{если } i\text{-} \Bar{u} \text{ опрошенный этого не считает} \end{cases}.$$

Для расчета параметров модели оценки вероятности (того, что y=1) была использована logit-модель бинарного выбора. В результате получена формула для оценки вероятности читаемости (коэффициента читабельности):

$$\widehat{y} = \frac{e^{0.0559x_1 + 0.6475x_2}}{1 + e^{0.0559x_1 + 0.6475x_2}}.$$

Таблица сравнения результатов с исходными данными:

№ фрагмента	Средний % читабельности	Регрессионная модель	Доля читабельности	Модель бинарного выбора
1 — учебник по ТВ	69,931	57,39058	0,862	0,73463801
2 — учебник по МС	55,569	71,4666	0,5	0,780215904
3 — Г. Крамер	70,7069	66,32069	0,9483	0,765006235
4 — справочник по ПС	59,293	54,92164	0,655	0,725878131
5 — материал ресурса	72,241	74,58854	0,896	0,789378792
6 — материал ресурса	63,448	58,4884	0,983	0,737023273

Последний подход представляется наиболее перспективным для дальнейших исследований. Представляется возможным при наличии обширной базы результатов тестирования различных учебно-методических материалов получить национальный индекс удобочитаемости для студентов высшей школы, изучающих математические диспиплины.

СПИСОК ЛИТЕРАТУРЫ

- 1. Флэш Р. Как проверить читаемость, 1951.
- 2. Кинкейд Дж. П., Фишберн Р. П., Роджерс Р. Л., Чиссом Б. С. Вывод новых формул удобочитаемости (автоматический индекс удобочитаемости, количество туманов и формула удобства чтения Флеша) для рядового состава ВМФ. Отчет исследовательского отдела 8-75. Начальник военно-технической подготовки: Военновоздушная база Мемфис, 1975.

UDC 519.24; 51.77 DOI https://doi.org/

DOI https://doi.org/10.52513/08698325_2022_29_1_1

Zyazin VP., Pastuchova Yu. I. (Moscow, RTU MIREA, Central Economics and Mathematical Institute RAS). On the readability of math tests.

 $Abstract: \ \ By \ analogy \ with the Rudolf Flash index, an approach is proposed to obtain a formula for calculating the readability index of educational and methodological texts in mathematical disciplines studied in higher educational institutions.$

Keywords: readability, readability indexes, logit-model.