В. О. М и р о н к и н (Москва, МИРЭА). Оценка снизу средней трудоемкости алгоритма опробования ключа до успеха для одной модели дискретного источника формирования ключей.

УДК 519.218+004.056.5 DOI https://doi.org/10.52513/08698325_2024_31_1_1

Резюме: Для математической модели двоичного дискретного источника, описывающего реальные физические устройства, используемые для формирования ключей, получена компактная и легко вычислимая оценка снизу для средней трудоемкости алгоритма опробования ключа до успеха.

Ключевые слова: Алгоритм опробования ключа до успеха.

Общие сведения

В соответствии с [1] рассмотрим двоичный дискретный источник — вероятностное пространство $(\{0,1\}^{\infty},\mathcal{F},\mathbf{P})$, где \mathcal{F} — наименьшая по включению σ -алгебра на $\{0,1\}^{\infty}$, содержащая все цилиндрические множества [2] общего вида, а вероятность \mathbf{P} такова, что для ее конечномерных распределений P_{t_1,t_2,\ldots,t_k} , $1 \leqslant t_1 < t_2 < \cdots < t_k$, $k=1,2\ldots$, выполняется соотношение

$$\left(\frac{1}{2} - \varepsilon\right)^k \leqslant P_{t_1, t_2, \dots, t_k} \left(x_1, x_2, \dots, x_k\right) \leqslant \left(\frac{1}{2} + \varepsilon\right)^k \tag{1}$$

для произвольных $(x_1, x_2, \ldots, x_k) \in \{0,1\}^k$, где $0 \leqslant \varepsilon \leqslant \frac{1}{2}$, а последовательность элементов t_1, t_2, \ldots, t_k определяет моменты времени формирования источником $(\{0,1\}^\infty, \mathcal{F}, \mathbf{P})$ знаков x_1, x_2, \ldots, x_k .

В работе [1] для источника (1), формирующего ключи в соответствии с вероятностной схемой

$$\mathcal{A}_{\varepsilon}\left(\overline{t}\right) \sim \begin{pmatrix} \omega_{1} & \omega_{2} & \dots & \omega_{2^{n}} \\ p_{1}\left(\overline{t}\right) & p_{2}\left(\overline{t}\right) & \dots & p_{2^{n}}\left(\overline{t}\right) \end{pmatrix},\tag{2}$$

где $\omega_i \in \{0,1\}^n$, $j=1,2,\ldots,2^n$, а компоненты вектора $\overline{p}\left(\overline{t}\right)=\left(p_1\left(\overline{t}\right),p_2\left(\overline{t}\right),\ldots,p_{2^n}\left(\overline{t}\right)\right)$ удовлетворяют системе соотношений

$$\begin{cases}
p_1(\bar{t}) + p_2(\bar{t}) + \dots + p_{2^n}(\bar{t}) = 1, \\
1 > p_1(\bar{t}) \geqslant p_2(\bar{t}) \geqslant \dots \geqslant p_{2^n}(\bar{t}) > 0, \\
(\frac{1}{2} - \varepsilon)^n \leqslant p_j(\bar{t}) \leqslant (\frac{1}{2} + \varepsilon)^n, \ j = 1, 2, \dots, 2^n,
\end{cases}$$
(3)

[©] Редакция журнала «ОПиПМ», 2024 г.

получена достижимая оценка снизу средней трудоемкости алгоритма опробования ключа до успеха:

$$T_n^{(1)}(\varepsilon) = s + 1 + (2^n - s - 1) \frac{2^n - s}{2} \left(\frac{1}{2} - \varepsilon\right)^n - \frac{s(s+1)}{2} \left(\frac{1}{2} + \varepsilon\right)^n,$$
 (4)

где $s=\left[2^n\frac{1-(1-2\varepsilon)^n}{(1+2\varepsilon)^n-(1-2\varepsilon)^n}\right], \ \mathrm{a}\ n\in\mathbb{N}$ и $\varepsilon,\ 0<\varepsilon<\frac{1}{2}$ — произвольные и определяются вероятностной схемой (2).

Замечание 1. Характеристика $T_n^{(1)}(\varepsilon)$ играет особую практическую роль при решении целого ряда задач информационной безопасности [3, 4, 5], в том числе при синтезе и анализе аппаратно-программных средств, используемых для генерации случайных последовательностей [6], на основе которых формируются ключи шифрования, ключи электронной подписи, пароли, пин-коды и т. д.

Отметим, что оценка (4) является достижимой, имеет достаточно простой аналитический вид и эффективна вычислима при больших значениях $n \in \mathbb{N}$, используемых в ряде практических приложений. Однако и ее можно упростить без существенной потери точности оценивания.

Основной результат

Утверждение 1. Для произвольных $n\in\mathbb{N}$ и $\varepsilon,\ 0<\varepsilon<\frac{1}{2},\ cnpa-$ ведливо неравенство

$$T_n^{(1)}(\varepsilon) \geqslant \widetilde{T}_n^{(1)}(\varepsilon) = 2^{n-1} \frac{1 - 2(1 - 2\varepsilon)^n + (1 - 4\varepsilon^2)^n}{(1 + 2\varepsilon)^n - (1 - 2\varepsilon)^n} + \frac{1}{2}.$$
 (5)

При этом $0 \leqslant T_n^{(1)}(\varepsilon) - \widetilde{T}_n^{(1)}(\varepsilon) < \frac{1}{8}$.

Доказательство. Для произвольных фиксированных $n\in\mathbb{N}$ и $\varepsilon,~0<\varepsilon<\frac{1}{2},$ положим

$$\omega = 2^n \frac{1 - (1 - 2\varepsilon)^n}{(1 + 2\varepsilon)^n - (1 - 2\varepsilon)^n} - s \tag{6}$$

и построим сначала оценку снизу $\widehat{T}_n^{(1)}(\varepsilon)$ для $T_n^{(1)}(\varepsilon)$, исключив из (4) целую часть выражения $2^n \frac{1-(1-2\varepsilon)^n}{(1+2\varepsilon)^n-(1-2\varepsilon)^n}$ путем замены величины s в ее первом вхождении в (4) на выражение $2^n \frac{1-(1-2\varepsilon)^n}{(1+2\varepsilon)^n-(1-2\varepsilon)^n} - 1 = s+\omega-1$, а во всех остальных вхождениях — на $2^n \frac{1-(1-2\varepsilon)^n}{(1+2\varepsilon)^n-(1-2\varepsilon)^n} = s+\omega$:

$$\begin{split} T_n^{(1)}\left(\varepsilon\right) &\geqslant \widehat{T}_n^{(1)}\left(\varepsilon\right) \\ &= s + \omega + \left(2^n - s - \omega - 1\right) \frac{2^n - s - \omega}{2} \left(\frac{1}{2} - \varepsilon\right)^n - \frac{\left(s + \omega\right)\left(s + \omega + 1\right)}{2} \left(\frac{1}{2} + \varepsilon\right)^n. \end{split}$$

Далее путем несложных преобразований, учитывая, что по определению величины s (см. [1]), где $s < 2^n$, совпадающей с наибольшим натуральным числом, удовлетворяющим условию

$$s\left(\frac{1}{2} + \varepsilon\right)^n + (2^n - s)\left(\frac{1}{2} - \varepsilon\right)^n \leqslant 1,\tag{7}$$

следует равенство

$$(s+\omega)\left(\frac{1}{2}+\varepsilon\right)^n + (2^n - s - \omega)\left(\frac{1}{2} - \varepsilon\right)^n = 1,\tag{8}$$

получим следующую цепочку соотношений:

$$\begin{split} T_n^{(1)}\left(\varepsilon\right) - \widehat{T}_n^{(1)}\left(\varepsilon\right) &= s + 1 + \left(2^n - s - 1\right) \frac{2^n - s}{2} \left(\frac{1}{2} - \varepsilon\right)^n - \frac{s\left(s + 1\right)}{2} \left(\frac{1}{2} + \varepsilon\right)^n \\ &- \left(s + \omega + \left(2^n - s - \omega - 1\right) \frac{2^n - s - \omega}{2} \left(\frac{1}{2} - \varepsilon\right)^n - \frac{\left(s + \omega\right)\left(s + \omega + 1\right)}{2} \left(\frac{1}{2} + \varepsilon\right)^n \\ &= 1 - \omega + \left(\frac{1}{2} + \varepsilon\right)^n \left(2s + \omega + 1\right) \frac{\omega}{2} + \left(\frac{1}{2} - \varepsilon\right)^n \left(2^{n+1} - 2s - \omega - 1\right) \frac{\omega}{2} \\ &= 1 - \omega + \left(\frac{1}{2} + \varepsilon\right)^n \left(2s + 2\omega\right) \frac{\omega}{2} + \left(\frac{1}{2} - \varepsilon\right)^n \left(2^{n+1} - 2s - 2\omega\right) \frac{\omega}{2} \\ &- \left(\frac{1}{2} + \varepsilon\right)^n \left(\omega - 1\right) \frac{\omega}{2} + \left(\frac{1}{2} - \varepsilon\right)^n \left(\omega - 1\right) \frac{\omega}{2} \\ &= 1 - \frac{\omega\left(\omega - 1\right)}{2} \left(\left(\frac{1}{2} + \varepsilon\right)^n - \left(\frac{1}{2} - \varepsilon\right)^n\right). \end{split}$$

В соответствии с (6) величина ω представляет собой дробную часть числа $s+\omega$, и поэтому $0\leqslant\omega<1$. Кроме того, на полуинтервале [0,1) величина $\frac{\omega(\omega-1)}{2}\in\left[-\frac{1}{8},0\right]$. Таким образом,

$$1 \leqslant T_n^{(1)}\left(\varepsilon\right) - \widehat{T}_n^{(1)}\left(\varepsilon\right) \leqslant 1 + \frac{1}{8}\left(\left(\frac{1}{2} + \varepsilon\right)^n - \left(\frac{1}{2} - \varepsilon\right)^n\right) < \frac{9}{8}.$$

Теперь, взяв в качестве искомой оценки величину $\widetilde{T}_n^{(1)}\left(\varepsilon\right)=\widehat{T}_n^{(1)}\left(\varepsilon\right)+1,$ получим неравенство

$$0 \leqslant T_n^{(1)}(\varepsilon) - \widetilde{T}_n^{(1)}(\varepsilon) < \frac{1}{8}.$$

При этом, учитывая (8), приходим к представлению (5) для оценки

 $\widetilde{T}_{n}^{(1)}\left(\varepsilon\right)$:

$$\widetilde{T}_{n}^{(1)}\left(\varepsilon\right) = s + \omega + 1 + \left(2^{n} - s - \omega - 1\right) \frac{2^{n} - s - \omega}{2} \left(\frac{1}{2} - \varepsilon\right)^{n}$$

$$- \frac{\left(s + \omega\right)\left(s + \omega + 1\right)}{2} \left(\frac{1}{2} + \varepsilon\right)^{n} = 2^{n} \frac{2^{n} - s - \omega}{2} \left(\frac{1}{2} - \varepsilon\right)^{n}$$

$$+ \frac{s + \omega + 1}{2} \left(2 - \left(2^{n} - s - \omega\right) \left(\frac{1}{2} - \varepsilon\right)^{n} - \left(s + \omega\right) \left(\frac{1}{2} + \varepsilon\right)^{n}\right)$$

$$= \frac{s + \omega}{2} \left(1 - \left(1 - 2\varepsilon\right)^{n}\right) + 2^{n-1} \left(1 - 2\varepsilon\right)^{n} + \frac{1}{2}$$

$$= 2^{n-1} \frac{1 - 2\left(1 - 2\varepsilon\right)^{n} + \left(1 - 4\varepsilon^{2}\right)^{n}}{\left(1 + 2\varepsilon\right)^{n} - \left(1 - 2\varepsilon\right)^{n}} + \frac{1}{2}.$$

Утверждение доказано.

В заключение отметим, что для наиболее часто применяемых на практике значений $n\in\mathbb{N}$ построенная оценка $\widetilde{T}_n^{(1)}(\varepsilon)$ имеет высокую точность. Так, например, для n=256 и $\varepsilon=10^{-2}$ эталонная достижимая снизу оценка $T_n^{(1)}(\varepsilon)$ имеет порядок 10^{74} , что не соизмеримо с величиной отклонения $\frac{1}{8}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Логачев А. С., Миронкин В. О. О влиянии вероятностных характеристик дискретных источников, формирующих криптографические ключи, на практическую секретность ключа. Прикладная дискретн. матем., 2024, в. 65, с. 66—83.// Logachev A. S., Mironkin V. O. O vliyanii veroyatnostnikh kharakteristik diskretnikh istochnikov, formiruyuchikh kriptograficheskie klyuchi, na prakticheskuyu sekretnost klyucha'. Prikladnaya diskretnaya matematika, 2024, is. 65, p. 66—83. (in Russian).
- 2. *Лось А. Б.*, *Миронкин В. О.* Теоретико-информационные аспекты защиты информации, М.: URSS, 2023, 144 с. // *Los A. B.*, *Mironkin V. O.*, Teoretiko-informacionnie aspekty zashity informacii, M.: URSS, 2023, 144 с. (in Russian).
- 3. *Арбеков И. М.* Критерии секретности ключа. Матем. вопросы криптографии, 2016 ,т. 7, в. 1, с. 39–56. // *Arbekov I. M.*, Kriterii sekretnosti klucha. Matem. Vopr. kriptografii, 2016, v. 7, is. 1, p. 39–56 (in Russian).
- 4. Arbekov I. M. Lower bounds for the practical secrecy of a key. Matem. Vopr. Kriptogr., 2017, v. 8, is. 2, p. 29–38.
- 5. *Арбеков И. М.* Элементарная квантовая криптография: Для криптографов, не знакомых с квантовой механикой, М.: URSS, 2022, 168 с.// *Arbekov I. M.*, Elementarnaya kvantovaya kriptografiya: Dlya kriptografov, ne znakomyh s kvantovoy mekhanikov, M.: URSS, 2022, 168 p. (in Russian).
- 6. Turam M., Barker E., Kelsey J., McKay K. Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B, 2018, 76 p.

Поступила в редакцию 02.VII.2024

UDC 519.218+004.056.5

DOI https://doi.org/10.52513/08698325_2024_31_1_1

 $\it Mironkin VO.\ (Moscow, MIREA).$ The lower estimate of the average complexity of the algorithm of testing a key to success for one model of a discrete source of key generation.

Abstract: For a mathematical model of a binary discrete source describing real physical devices used to generate keys, a compact and easily computable lower estimate is obtained for the average complexity of the algorithm of testing a key to success.

Keywords: Algorithm of testing a key to success.